Junyang Liu, Zhengchao Zhou, Hao Chen, Weixiao Han
{"title":"根系随生长时间和水动力特性对土壤剥离的不同影响","authors":"Junyang Liu, Zhengchao Zhou, Hao Chen, Weixiao Han","doi":"10.1002/esp.5839","DOIUrl":null,"url":null,"abstract":"<p>Plant roots significantly reduce soil detachment by overland flow. However, there have been few studies on how plant growth time and hydrodynamic characteristics affect the erosion-reducing potential of plant roots. This study cultivated ryegrass (<i>Lolium perenne L</i>.) and alfalfa (<i>Medicago sativa L</i>.) as representative of plants possessing fibrous roots and taproots, respectively, in silty soil from the Loess Plateau, China. Root-soil composites were collected monthly from March to September 2021 and subjected to flow scouring in a hydraulic flume at a 15° slope using five different flow discharges (0.05, 0.1, 0.15, 0.2 and 0.3 L s<sup>−1</sup>). The results of the study indicated that root length density, root surface area density and root mass density exhibited a significant increase during the early growth phase, followed by a slight decrease. All parameters of fibrous roots revealed greater values than those of taproots, except for root mass density. The reduction in soil detachment under varying flow shear stresses showed a significant increase during the early phases of growth, followed by a gradual decline. Notably, fibrous roots demonstrated a greater impact on soil detachment than taproots, and this discrepancy fluctuated over time. Moreover, the contributions of fibrous and taproots to reducing soil detachment decreased from 55.81% to 39.66% and from 38.21% to 20.99% with increasing flow shear stress, respectively. It indicated that the erosion-reducing potential of plant roots was greater when subjected to low-flow shear stress compared to high-flow shear stress. This study can provide a scientific basis for understanding the erosion-reducing potential of plant roots at different growing stages and under varying hydrodynamic characteristics.</p>","PeriodicalId":11408,"journal":{"name":"Earth Surface Processes and Landforms","volume":"49 9","pages":"2601-2611"},"PeriodicalIF":2.8000,"publicationDate":"2024-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Varied root effects on soil detachment with growth time and hydrodynamic characteristics\",\"authors\":\"Junyang Liu, Zhengchao Zhou, Hao Chen, Weixiao Han\",\"doi\":\"10.1002/esp.5839\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Plant roots significantly reduce soil detachment by overland flow. However, there have been few studies on how plant growth time and hydrodynamic characteristics affect the erosion-reducing potential of plant roots. This study cultivated ryegrass (<i>Lolium perenne L</i>.) and alfalfa (<i>Medicago sativa L</i>.) as representative of plants possessing fibrous roots and taproots, respectively, in silty soil from the Loess Plateau, China. Root-soil composites were collected monthly from March to September 2021 and subjected to flow scouring in a hydraulic flume at a 15° slope using five different flow discharges (0.05, 0.1, 0.15, 0.2 and 0.3 L s<sup>−1</sup>). The results of the study indicated that root length density, root surface area density and root mass density exhibited a significant increase during the early growth phase, followed by a slight decrease. All parameters of fibrous roots revealed greater values than those of taproots, except for root mass density. The reduction in soil detachment under varying flow shear stresses showed a significant increase during the early phases of growth, followed by a gradual decline. Notably, fibrous roots demonstrated a greater impact on soil detachment than taproots, and this discrepancy fluctuated over time. Moreover, the contributions of fibrous and taproots to reducing soil detachment decreased from 55.81% to 39.66% and from 38.21% to 20.99% with increasing flow shear stress, respectively. It indicated that the erosion-reducing potential of plant roots was greater when subjected to low-flow shear stress compared to high-flow shear stress. This study can provide a scientific basis for understanding the erosion-reducing potential of plant roots at different growing stages and under varying hydrodynamic characteristics.</p>\",\"PeriodicalId\":11408,\"journal\":{\"name\":\"Earth Surface Processes and Landforms\",\"volume\":\"49 9\",\"pages\":\"2601-2611\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth Surface Processes and Landforms\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/esp.5839\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth Surface Processes and Landforms","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/esp.5839","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
Varied root effects on soil detachment with growth time and hydrodynamic characteristics
Plant roots significantly reduce soil detachment by overland flow. However, there have been few studies on how plant growth time and hydrodynamic characteristics affect the erosion-reducing potential of plant roots. This study cultivated ryegrass (Lolium perenne L.) and alfalfa (Medicago sativa L.) as representative of plants possessing fibrous roots and taproots, respectively, in silty soil from the Loess Plateau, China. Root-soil composites were collected monthly from March to September 2021 and subjected to flow scouring in a hydraulic flume at a 15° slope using five different flow discharges (0.05, 0.1, 0.15, 0.2 and 0.3 L s−1). The results of the study indicated that root length density, root surface area density and root mass density exhibited a significant increase during the early growth phase, followed by a slight decrease. All parameters of fibrous roots revealed greater values than those of taproots, except for root mass density. The reduction in soil detachment under varying flow shear stresses showed a significant increase during the early phases of growth, followed by a gradual decline. Notably, fibrous roots demonstrated a greater impact on soil detachment than taproots, and this discrepancy fluctuated over time. Moreover, the contributions of fibrous and taproots to reducing soil detachment decreased from 55.81% to 39.66% and from 38.21% to 20.99% with increasing flow shear stress, respectively. It indicated that the erosion-reducing potential of plant roots was greater when subjected to low-flow shear stress compared to high-flow shear stress. This study can provide a scientific basis for understanding the erosion-reducing potential of plant roots at different growing stages and under varying hydrodynamic characteristics.
期刊介绍:
Earth Surface Processes and Landforms is an interdisciplinary international journal concerned with:
the interactions between surface processes and landforms and landscapes;
that lead to physical, chemical and biological changes; and which in turn create;
current landscapes and the geological record of past landscapes.
Its focus is core to both physical geographical and geological communities, and also the wider geosciences