{"title":"团队语义的紧凑性","authors":"Joni Puljujärvi, Davide Emilio Quadrellaro","doi":"10.1002/malq.202200072","DOIUrl":null,"url":null,"abstract":"<p>We provide two proofs of the compactness theorem for extensions of first-order logic based on team semantics. First, we build upon Lück's [16] ultraproduct construction for team semantics and prove a suitable version of Łoś' Theorem. Second, we show that by working with suitably saturated models, we can generalize the proof of Kontinen and Yang [13] to sets of formulas with arbitrarily many variables.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":"70 2","pages":"142-161"},"PeriodicalIF":0.4000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/malq.202200072","citationCount":"0","resultStr":"{\"title\":\"Compactness in team semantics\",\"authors\":\"Joni Puljujärvi, Davide Emilio Quadrellaro\",\"doi\":\"10.1002/malq.202200072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We provide two proofs of the compactness theorem for extensions of first-order logic based on team semantics. First, we build upon Lück's [16] ultraproduct construction for team semantics and prove a suitable version of Łoś' Theorem. Second, we show that by working with suitably saturated models, we can generalize the proof of Kontinen and Yang [13] to sets of formulas with arbitrarily many variables.</p>\",\"PeriodicalId\":49864,\"journal\":{\"name\":\"Mathematical Logic Quarterly\",\"volume\":\"70 2\",\"pages\":\"142-161\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/malq.202200072\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Logic Quarterly\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/malq.202200072\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Logic Quarterly","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202200072","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
We provide two proofs of the compactness theorem for extensions of first-order logic based on team semantics. First, we build upon Lück's [16] ultraproduct construction for team semantics and prove a suitable version of Łoś' Theorem. Second, we show that by working with suitably saturated models, we can generalize the proof of Kontinen and Yang [13] to sets of formulas with arbitrarily many variables.
期刊介绍:
Mathematical Logic Quarterly publishes original contributions on mathematical logic and foundations of mathematics and related areas, such as general logic, model theory, recursion theory, set theory, proof theory and constructive mathematics, algebraic logic, nonstandard models, and logical aspects of theoretical computer science.