{"title":"团队语义的紧凑性","authors":"Joni Puljujärvi, Davide Emilio Quadrellaro","doi":"10.1002/malq.202200072","DOIUrl":null,"url":null,"abstract":"<p>We provide two proofs of the compactness theorem for extensions of first-order logic based on team semantics. First, we build upon Lück's [16] ultraproduct construction for team semantics and prove a suitable version of Łoś' Theorem. Second, we show that by working with suitably saturated models, we can generalize the proof of Kontinen and Yang [13] to sets of formulas with arbitrarily many variables.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/malq.202200072","citationCount":"0","resultStr":"{\"title\":\"Compactness in team semantics\",\"authors\":\"Joni Puljujärvi, Davide Emilio Quadrellaro\",\"doi\":\"10.1002/malq.202200072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We provide two proofs of the compactness theorem for extensions of first-order logic based on team semantics. First, we build upon Lück's [16] ultraproduct construction for team semantics and prove a suitable version of Łoś' Theorem. Second, we show that by working with suitably saturated models, we can generalize the proof of Kontinen and Yang [13] to sets of formulas with arbitrarily many variables.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/malq.202200072\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/malq.202200072\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202200072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We provide two proofs of the compactness theorem for extensions of first-order logic based on team semantics. First, we build upon Lück's [16] ultraproduct construction for team semantics and prove a suitable version of Łoś' Theorem. Second, we show that by working with suitably saturated models, we can generalize the proof of Kontinen and Yang [13] to sets of formulas with arbitrarily many variables.