{"title":"积木的弱理论","authors":"Juvenal Murwanashyaka","doi":"10.1002/malq.202300015","DOIUrl":null,"url":null,"abstract":"<p>We apply the mereological concept of parthood to the coding of finite sequences. We propose a first-order theory in which coding finite sequences is intuitive and transparent. We compare this theory with Robinson arithmetic, adjunctive set theory and weak theories of finite strings and finite trees using interpretability.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/malq.202300015","citationCount":"0","resultStr":"{\"title\":\"A weak theory of building blocks\",\"authors\":\"Juvenal Murwanashyaka\",\"doi\":\"10.1002/malq.202300015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We apply the mereological concept of parthood to the coding of finite sequences. We propose a first-order theory in which coding finite sequences is intuitive and transparent. We compare this theory with Robinson arithmetic, adjunctive set theory and weak theories of finite strings and finite trees using interpretability.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/malq.202300015\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/malq.202300015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202300015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We apply the mereological concept of parthood to the coding of finite sequences. We propose a first-order theory in which coding finite sequences is intuitive and transparent. We compare this theory with Robinson arithmetic, adjunctive set theory and weak theories of finite strings and finite trees using interpretability.