添加ω2$\omega _2$的高度通用子集

Pub Date : 2024-05-27 DOI:10.1002/malq.202300007
Rouholah Hoseini Naveh, Mohammed Golshani, Esfandiar Eslami
{"title":"添加ω2$\\omega _2$的高度通用子集","authors":"Rouholah Hoseini Naveh,&nbsp;Mohammed Golshani,&nbsp;Esfandiar Eslami","doi":"10.1002/malq.202300007","DOIUrl":null,"url":null,"abstract":"<p>Starting from the generalized continuum hypothesis (<span></span><math>\n <semantics>\n <mi>GCH</mi>\n <annotation>$\\mathsf {GCH}$</annotation>\n </semantics></math>), we build a cardinal and <span></span><math>\n <semantics>\n <mi>GCH</mi>\n <annotation>$\\mathsf {GCH}$</annotation>\n </semantics></math> preserving generic extension of the universe, in which there exists a set <span></span><math>\n <semantics>\n <mrow>\n <mi>A</mi>\n <mo>⊆</mo>\n <msub>\n <mi>ω</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation>$A \\subseteq \\omega _2$</annotation>\n </semantics></math> of size <span></span><math>\n <semantics>\n <msub>\n <mi>ℵ</mi>\n <mn>2</mn>\n </msub>\n <annotation>$\\aleph _2$</annotation>\n </semantics></math> so that every countably infinite subset of <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$A$</annotation>\n </semantics></math> or <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>ω</mi>\n <mn>2</mn>\n </msub>\n <mo>∖</mo>\n <mi>A</mi>\n </mrow>\n <annotation>$\\omega _2 \\setminus A$</annotation>\n </semantics></math> is Cohen generic over the ground model.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adding highly generic subsets of \\n \\n \\n ω\\n 2\\n \\n $\\\\omega _2$\",\"authors\":\"Rouholah Hoseini Naveh,&nbsp;Mohammed Golshani,&nbsp;Esfandiar Eslami\",\"doi\":\"10.1002/malq.202300007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Starting from the generalized continuum hypothesis (<span></span><math>\\n <semantics>\\n <mi>GCH</mi>\\n <annotation>$\\\\mathsf {GCH}$</annotation>\\n </semantics></math>), we build a cardinal and <span></span><math>\\n <semantics>\\n <mi>GCH</mi>\\n <annotation>$\\\\mathsf {GCH}$</annotation>\\n </semantics></math> preserving generic extension of the universe, in which there exists a set <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>A</mi>\\n <mo>⊆</mo>\\n <msub>\\n <mi>ω</mi>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation>$A \\\\subseteq \\\\omega _2$</annotation>\\n </semantics></math> of size <span></span><math>\\n <semantics>\\n <msub>\\n <mi>ℵ</mi>\\n <mn>2</mn>\\n </msub>\\n <annotation>$\\\\aleph _2$</annotation>\\n </semantics></math> so that every countably infinite subset of <span></span><math>\\n <semantics>\\n <mi>A</mi>\\n <annotation>$A$</annotation>\\n </semantics></math> or <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>ω</mi>\\n <mn>2</mn>\\n </msub>\\n <mo>∖</mo>\\n <mi>A</mi>\\n </mrow>\\n <annotation>$\\\\omega _2 \\\\setminus A$</annotation>\\n </semantics></math> is Cohen generic over the ground model.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/malq.202300007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202300007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

从广义连续统假设()出发,我们建立了一个宇宙的有心和保全泛函扩展,其中存在一个大小为的集合,使得或的每一个可数无限子集都是地面模型上的科恩泛函。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Adding highly generic subsets of ω 2 $\omega _2$

Starting from the generalized continuum hypothesis ( GCH $\mathsf {GCH}$ ), we build a cardinal and GCH $\mathsf {GCH}$ preserving generic extension of the universe, in which there exists a set A ω 2 $A \subseteq \omega _2$ of size 2 $\aleph _2$ so that every countably infinite subset of A $A$ or ω 2 A $\omega _2 \setminus A$ is Cohen generic over the ground model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信