Rouholah Hoseini Naveh, Mohammed Golshani, Esfandiar Eslami
{"title":"添加ω2$\\omega _2$的高度通用子集","authors":"Rouholah Hoseini Naveh, Mohammed Golshani, Esfandiar Eslami","doi":"10.1002/malq.202300007","DOIUrl":null,"url":null,"abstract":"<p>Starting from the generalized continuum hypothesis (<span></span><math>\n <semantics>\n <mi>GCH</mi>\n <annotation>$\\mathsf {GCH}$</annotation>\n </semantics></math>), we build a cardinal and <span></span><math>\n <semantics>\n <mi>GCH</mi>\n <annotation>$\\mathsf {GCH}$</annotation>\n </semantics></math> preserving generic extension of the universe, in which there exists a set <span></span><math>\n <semantics>\n <mrow>\n <mi>A</mi>\n <mo>⊆</mo>\n <msub>\n <mi>ω</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation>$A \\subseteq \\omega _2$</annotation>\n </semantics></math> of size <span></span><math>\n <semantics>\n <msub>\n <mi>ℵ</mi>\n <mn>2</mn>\n </msub>\n <annotation>$\\aleph _2$</annotation>\n </semantics></math> so that every countably infinite subset of <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$A$</annotation>\n </semantics></math> or <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>ω</mi>\n <mn>2</mn>\n </msub>\n <mo>∖</mo>\n <mi>A</mi>\n </mrow>\n <annotation>$\\omega _2 \\setminus A$</annotation>\n </semantics></math> is Cohen generic over the ground model.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adding highly generic subsets of \\n \\n \\n ω\\n 2\\n \\n $\\\\omega _2$\",\"authors\":\"Rouholah Hoseini Naveh, Mohammed Golshani, Esfandiar Eslami\",\"doi\":\"10.1002/malq.202300007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Starting from the generalized continuum hypothesis (<span></span><math>\\n <semantics>\\n <mi>GCH</mi>\\n <annotation>$\\\\mathsf {GCH}$</annotation>\\n </semantics></math>), we build a cardinal and <span></span><math>\\n <semantics>\\n <mi>GCH</mi>\\n <annotation>$\\\\mathsf {GCH}$</annotation>\\n </semantics></math> preserving generic extension of the universe, in which there exists a set <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>A</mi>\\n <mo>⊆</mo>\\n <msub>\\n <mi>ω</mi>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation>$A \\\\subseteq \\\\omega _2$</annotation>\\n </semantics></math> of size <span></span><math>\\n <semantics>\\n <msub>\\n <mi>ℵ</mi>\\n <mn>2</mn>\\n </msub>\\n <annotation>$\\\\aleph _2$</annotation>\\n </semantics></math> so that every countably infinite subset of <span></span><math>\\n <semantics>\\n <mi>A</mi>\\n <annotation>$A$</annotation>\\n </semantics></math> or <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>ω</mi>\\n <mn>2</mn>\\n </msub>\\n <mo>∖</mo>\\n <mi>A</mi>\\n </mrow>\\n <annotation>$\\\\omega _2 \\\\setminus A$</annotation>\\n </semantics></math> is Cohen generic over the ground model.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/malq.202300007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202300007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Starting from the generalized continuum hypothesis (), we build a cardinal and preserving generic extension of the universe, in which there exists a set of size so that every countably infinite subset of or is Cohen generic over the ground model.