添加ω2$\omega _2$的高度通用子集

IF 0.4 4区 数学 Q4 LOGIC
Rouholah Hoseini Naveh, Mohammed Golshani, Esfandiar Eslami
{"title":"添加ω2$\\omega _2$的高度通用子集","authors":"Rouholah Hoseini Naveh,&nbsp;Mohammed Golshani,&nbsp;Esfandiar Eslami","doi":"10.1002/malq.202300007","DOIUrl":null,"url":null,"abstract":"<p>Starting from the generalized continuum hypothesis (<span></span><math>\n <semantics>\n <mi>GCH</mi>\n <annotation>$\\mathsf {GCH}$</annotation>\n </semantics></math>), we build a cardinal and <span></span><math>\n <semantics>\n <mi>GCH</mi>\n <annotation>$\\mathsf {GCH}$</annotation>\n </semantics></math> preserving generic extension of the universe, in which there exists a set <span></span><math>\n <semantics>\n <mrow>\n <mi>A</mi>\n <mo>⊆</mo>\n <msub>\n <mi>ω</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation>$A \\subseteq \\omega _2$</annotation>\n </semantics></math> of size <span></span><math>\n <semantics>\n <msub>\n <mi>ℵ</mi>\n <mn>2</mn>\n </msub>\n <annotation>$\\aleph _2$</annotation>\n </semantics></math> so that every countably infinite subset of <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$A$</annotation>\n </semantics></math> or <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>ω</mi>\n <mn>2</mn>\n </msub>\n <mo>∖</mo>\n <mi>A</mi>\n </mrow>\n <annotation>$\\omega _2 \\setminus A$</annotation>\n </semantics></math> is Cohen generic over the ground model.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":"70 1","pages":"126-133"},"PeriodicalIF":0.4000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adding highly generic subsets of \\n \\n \\n ω\\n 2\\n \\n $\\\\omega _2$\",\"authors\":\"Rouholah Hoseini Naveh,&nbsp;Mohammed Golshani,&nbsp;Esfandiar Eslami\",\"doi\":\"10.1002/malq.202300007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Starting from the generalized continuum hypothesis (<span></span><math>\\n <semantics>\\n <mi>GCH</mi>\\n <annotation>$\\\\mathsf {GCH}$</annotation>\\n </semantics></math>), we build a cardinal and <span></span><math>\\n <semantics>\\n <mi>GCH</mi>\\n <annotation>$\\\\mathsf {GCH}$</annotation>\\n </semantics></math> preserving generic extension of the universe, in which there exists a set <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>A</mi>\\n <mo>⊆</mo>\\n <msub>\\n <mi>ω</mi>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation>$A \\\\subseteq \\\\omega _2$</annotation>\\n </semantics></math> of size <span></span><math>\\n <semantics>\\n <msub>\\n <mi>ℵ</mi>\\n <mn>2</mn>\\n </msub>\\n <annotation>$\\\\aleph _2$</annotation>\\n </semantics></math> so that every countably infinite subset of <span></span><math>\\n <semantics>\\n <mi>A</mi>\\n <annotation>$A$</annotation>\\n </semantics></math> or <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>ω</mi>\\n <mn>2</mn>\\n </msub>\\n <mo>∖</mo>\\n <mi>A</mi>\\n </mrow>\\n <annotation>$\\\\omega _2 \\\\setminus A$</annotation>\\n </semantics></math> is Cohen generic over the ground model.</p>\",\"PeriodicalId\":49864,\"journal\":{\"name\":\"Mathematical Logic Quarterly\",\"volume\":\"70 1\",\"pages\":\"126-133\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Logic Quarterly\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/malq.202300007\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Logic Quarterly","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202300007","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

摘要

从广义连续统假设()出发,我们建立了一个宇宙的有心和保全泛函扩展,其中存在一个大小为的集合,使得或的每一个可数无限子集都是地面模型上的科恩泛函。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adding highly generic subsets of ω 2 $\omega _2$

Starting from the generalized continuum hypothesis ( GCH $\mathsf {GCH}$ ), we build a cardinal and GCH $\mathsf {GCH}$ preserving generic extension of the universe, in which there exists a set A ω 2 $A \subseteq \omega _2$ of size 2 $\aleph _2$ so that every countably infinite subset of A $A$ or ω 2 A $\omega _2 \setminus A$ is Cohen generic over the ground model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
49
审稿时长
>12 weeks
期刊介绍: Mathematical Logic Quarterly publishes original contributions on mathematical logic and foundations of mathematics and related areas, such as general logic, model theory, recursion theory, set theory, proof theory and constructive mathematics, algebraic logic, nonstandard models, and logical aspects of theoretical computer science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信