基于微流控加工条件的甘蔗汁质量特性智能建模

IF 2.701
Ayon Tarafdar, Barjinder Pal Kaur
{"title":"基于微流控加工条件的甘蔗汁质量特性智能建模","authors":"Ayon Tarafdar,&nbsp;Barjinder Pal Kaur","doi":"10.1007/s13197-024-05994-2","DOIUrl":null,"url":null,"abstract":"<div><p>This investigation employed different ANN infrastructures for predicting the quality of sugarcane juice under varying microfluidization pressures (50–200 MPa) and cycles (1–7) which was previously unexplored. Two hidden layer (HL) activation functions (tansigmoid, logsigmoid) and learning algorithms (LM, GDX) with varying hidden layer neurons (HLNs) were tested to predict the color, total phenol content, total flavonoid content, chlorophyll content, total and reducing sugars, polyphenol oxidase activity, peroxidase activity, sucrose neutral invertase activity, aerobic plate count, yeast and mold count, particle size, sensory score and sedimentation rate of sugarcane juice under different microfluidization processing conditions. Results showed that the combination of LM + logsigmoid, GDX + logsigmoid and GDX + tansigmoid produced &gt; 90% prediction accuracy. Among these models, GDX + tansigmoid exhibited 91.7% accuracy on training, and 96% accuracy on testing using relatively lower number of neurons (10 HLNs), and was therefore selected to predict the quality characteristics of sugarcane juice.</p></div>","PeriodicalId":632,"journal":{"name":"Journal of Food Science and Technology","volume":"61 11","pages":"2215 - 2221"},"PeriodicalIF":2.7010,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intelligent modelling of sugarcane juice quality characteristics based on microfluidization processing conditions\",\"authors\":\"Ayon Tarafdar,&nbsp;Barjinder Pal Kaur\",\"doi\":\"10.1007/s13197-024-05994-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This investigation employed different ANN infrastructures for predicting the quality of sugarcane juice under varying microfluidization pressures (50–200 MPa) and cycles (1–7) which was previously unexplored. Two hidden layer (HL) activation functions (tansigmoid, logsigmoid) and learning algorithms (LM, GDX) with varying hidden layer neurons (HLNs) were tested to predict the color, total phenol content, total flavonoid content, chlorophyll content, total and reducing sugars, polyphenol oxidase activity, peroxidase activity, sucrose neutral invertase activity, aerobic plate count, yeast and mold count, particle size, sensory score and sedimentation rate of sugarcane juice under different microfluidization processing conditions. Results showed that the combination of LM + logsigmoid, GDX + logsigmoid and GDX + tansigmoid produced &gt; 90% prediction accuracy. Among these models, GDX + tansigmoid exhibited 91.7% accuracy on training, and 96% accuracy on testing using relatively lower number of neurons (10 HLNs), and was therefore selected to predict the quality characteristics of sugarcane juice.</p></div>\",\"PeriodicalId\":632,\"journal\":{\"name\":\"Journal of Food Science and Technology\",\"volume\":\"61 11\",\"pages\":\"2215 - 2221\"},\"PeriodicalIF\":2.7010,\"publicationDate\":\"2024-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Food Science and Technology\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13197-024-05994-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Science and Technology","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1007/s13197-024-05994-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项研究采用了不同的方差分析网络基础结构来预测不同微流体压力(50-200 兆帕)和周期(1-7)下甘蔗汁的质量,这在以前是没有过的。测试了两种隐层(HL)激活函数(tansigmoid、logsigmoid)和不同隐层神经元(HLN)的学习算法(LM、GDX),以预测不同微流控加工条件下甘蔗汁的颜色、总酚含量、总黄酮含量、叶绿素含量、总糖和还原糖、多酚氧化酶活性、过氧化物酶活性、蔗糖中性转化酶活性、需氧平板计数、酵母和霉菌计数、粒度、感官评分和沉降率。结果表明,LM + logsigmoid、GDX + logsigmoid 和 GDX + tansigmoid 的组合预测准确率为 90%。在这些模型中,GDX + tansigmoid 在使用相对较少的神经元数(10 个 HLN)时,训练准确率为 91.7%,测试准确率为 96%,因此被选来预测甘蔗汁的质量特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Intelligent modelling of sugarcane juice quality characteristics based on microfluidization processing conditions

Intelligent modelling of sugarcane juice quality characteristics based on microfluidization processing conditions

This investigation employed different ANN infrastructures for predicting the quality of sugarcane juice under varying microfluidization pressures (50–200 MPa) and cycles (1–7) which was previously unexplored. Two hidden layer (HL) activation functions (tansigmoid, logsigmoid) and learning algorithms (LM, GDX) with varying hidden layer neurons (HLNs) were tested to predict the color, total phenol content, total flavonoid content, chlorophyll content, total and reducing sugars, polyphenol oxidase activity, peroxidase activity, sucrose neutral invertase activity, aerobic plate count, yeast and mold count, particle size, sensory score and sedimentation rate of sugarcane juice under different microfluidization processing conditions. Results showed that the combination of LM + logsigmoid, GDX + logsigmoid and GDX + tansigmoid produced > 90% prediction accuracy. Among these models, GDX + tansigmoid exhibited 91.7% accuracy on training, and 96% accuracy on testing using relatively lower number of neurons (10 HLNs), and was therefore selected to predict the quality characteristics of sugarcane juice.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信