考虑到后续结构化的复合材料体积合成模型

IF 0.4 4区 物理与天体物理 Q4 PHYSICS, MULTIDISCIPLINARY
N. V. Bukrina, A. G. Knyazeva
{"title":"考虑到后续结构化的复合材料体积合成模型","authors":"N. V. Bukrina,&nbsp;A. G. Knyazeva","doi":"10.1007/s11182-024-03171-8","DOIUrl":null,"url":null,"abstract":"<p>The paper proposes a two-dimensional thermokinetic model of the composite synthesis process in the mode of dynamic thermal explosion taking into account the structurization of the synthesis product. Structurization in the model is understood as a transition from amorphous to crystalline state. The model takes into account the heating of the reactor walls by thermal radiation from the device, the temperature of which can vary at different rates. Chemical reactions are described by a summary scheme that corresponds to the synthesis of Ni<sub>3</sub>Al composite. The kinetic law takes into account a possible strong inhibition of the rate of the reaction with the accumulation of the synthesis product, which is typical for reactions controlled by diffusion at the particle level. The effective thermophysical properties of the components of mixture and reaction products in the reactor depend on the properties of the constituents of the initial mixture and the fraction of reaction product. The properties of the latter also depend on the degree of structurization. The structurization process is described by a special additional parameter whose evolution is modeled by a reversible reaction. It is assumed that the structurization process starts from the moment of product appearance and continues during the cooling of the system. It is shown that synthesis results in the formation of a composite containing the initial components and the reaction product with the matrix partly in the amorphous state and partly in the structured state. The dynamics of synthesis and structurization are influenced by heating conditions and reactor size.</p>","PeriodicalId":770,"journal":{"name":"Russian Physics Journal","volume":"67 6","pages":"718 - 726"},"PeriodicalIF":0.4000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling of Volumetric Synthesis of Composite with Regard the Subsequent Structurization\",\"authors\":\"N. V. Bukrina,&nbsp;A. G. Knyazeva\",\"doi\":\"10.1007/s11182-024-03171-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The paper proposes a two-dimensional thermokinetic model of the composite synthesis process in the mode of dynamic thermal explosion taking into account the structurization of the synthesis product. Structurization in the model is understood as a transition from amorphous to crystalline state. The model takes into account the heating of the reactor walls by thermal radiation from the device, the temperature of which can vary at different rates. Chemical reactions are described by a summary scheme that corresponds to the synthesis of Ni<sub>3</sub>Al composite. The kinetic law takes into account a possible strong inhibition of the rate of the reaction with the accumulation of the synthesis product, which is typical for reactions controlled by diffusion at the particle level. The effective thermophysical properties of the components of mixture and reaction products in the reactor depend on the properties of the constituents of the initial mixture and the fraction of reaction product. The properties of the latter also depend on the degree of structurization. The structurization process is described by a special additional parameter whose evolution is modeled by a reversible reaction. It is assumed that the structurization process starts from the moment of product appearance and continues during the cooling of the system. It is shown that synthesis results in the formation of a composite containing the initial components and the reaction product with the matrix partly in the amorphous state and partly in the structured state. The dynamics of synthesis and structurization are influenced by heating conditions and reactor size.</p>\",\"PeriodicalId\":770,\"journal\":{\"name\":\"Russian Physics Journal\",\"volume\":\"67 6\",\"pages\":\"718 - 726\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Physics Journal\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11182-024-03171-8\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Physics Journal","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11182-024-03171-8","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了动态热爆炸模式下复合材料合成过程的二维热动力学模型,其中考虑到了合成产物的结构化。模型中的结构化被理解为从无定形状态到结晶状态的转变。该模型考虑到了反应器壁通过来自设备的热辐射加热的情况,反应器壁的温度可以以不同的速率变化。化学反应由与 Ni3Al 复合材料合成相对应的简要方案描述。动力学规律考虑到了合成产物的积累可能对反应速率产生的强烈抑制作用,这是在粒子水平上由扩散控制的反应的典型特征。反应器中混合物成分和反应产物的有效热物理性质取决于初始混合物成分和反应产物组分的性质。后者的特性还取决于结构化程度。结构化过程由一个特殊的附加参数来描述,该参数的演变由一个可逆反应来模拟。假定结构化过程从产物出现的那一刻开始,并在系统冷却过程中持续进行。研究表明,合成的结果是形成包含初始成分和反应产物的复合体,基质部分处于无定形状态,部分处于结构化状态。合成和结构化的动态受加热条件和反应器大小的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling of Volumetric Synthesis of Composite with Regard the Subsequent Structurization

The paper proposes a two-dimensional thermokinetic model of the composite synthesis process in the mode of dynamic thermal explosion taking into account the structurization of the synthesis product. Structurization in the model is understood as a transition from amorphous to crystalline state. The model takes into account the heating of the reactor walls by thermal radiation from the device, the temperature of which can vary at different rates. Chemical reactions are described by a summary scheme that corresponds to the synthesis of Ni3Al composite. The kinetic law takes into account a possible strong inhibition of the rate of the reaction with the accumulation of the synthesis product, which is typical for reactions controlled by diffusion at the particle level. The effective thermophysical properties of the components of mixture and reaction products in the reactor depend on the properties of the constituents of the initial mixture and the fraction of reaction product. The properties of the latter also depend on the degree of structurization. The structurization process is described by a special additional parameter whose evolution is modeled by a reversible reaction. It is assumed that the structurization process starts from the moment of product appearance and continues during the cooling of the system. It is shown that synthesis results in the formation of a composite containing the initial components and the reaction product with the matrix partly in the amorphous state and partly in the structured state. The dynamics of synthesis and structurization are influenced by heating conditions and reactor size.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Russian Physics Journal
Russian Physics Journal PHYSICS, MULTIDISCIPLINARY-
CiteScore
1.00
自引率
50.00%
发文量
208
审稿时长
3-6 weeks
期刊介绍: Russian Physics Journal covers the broad spectrum of specialized research in applied physics, with emphasis on work with practical applications in solid-state physics, optics, and magnetism. Particularly interesting results are reported in connection with: electroluminescence and crystal phospors; semiconductors; phase transformations in solids; superconductivity; properties of thin films; and magnetomechanical phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信