{"title":"有限代数数环及其在素数分解定律中的应用","authors":"Julian Rosen , Yoshihiro Takeyama , Koji Tasaka , Shuji Yamamoto","doi":"10.1016/j.jnt.2024.04.003","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we develop an explicit method to express finite algebraic numbers (in particular, certain idempotents among them) in terms of linear recurrent sequences, and give applications to the characterization of the splitting primes in a given finite Galois extension over the rational field.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The ring of finite algebraic numbers and its application to the law of decomposition of primes\",\"authors\":\"Julian Rosen , Yoshihiro Takeyama , Koji Tasaka , Shuji Yamamoto\",\"doi\":\"10.1016/j.jnt.2024.04.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we develop an explicit method to express finite algebraic numbers (in particular, certain idempotents among them) in terms of linear recurrent sequences, and give applications to the characterization of the splitting primes in a given finite Galois extension over the rational field.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022314X24001100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X24001100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The ring of finite algebraic numbers and its application to the law of decomposition of primes
In this paper, we develop an explicit method to express finite algebraic numbers (in particular, certain idempotents among them) in terms of linear recurrent sequences, and give applications to the characterization of the splitting primes in a given finite Galois extension over the rational field.