有限代数数环及其在素数分解定律中的应用

Pub Date : 2024-05-24 DOI:10.1016/j.jnt.2024.04.003
Julian Rosen , Yoshihiro Takeyama , Koji Tasaka , Shuji Yamamoto
{"title":"有限代数数环及其在素数分解定律中的应用","authors":"Julian Rosen ,&nbsp;Yoshihiro Takeyama ,&nbsp;Koji Tasaka ,&nbsp;Shuji Yamamoto","doi":"10.1016/j.jnt.2024.04.003","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we develop an explicit method to express finite algebraic numbers (in particular, certain idempotents among them) in terms of linear recurrent sequences, and give applications to the characterization of the splitting primes in a given finite Galois extension over the rational field.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The ring of finite algebraic numbers and its application to the law of decomposition of primes\",\"authors\":\"Julian Rosen ,&nbsp;Yoshihiro Takeyama ,&nbsp;Koji Tasaka ,&nbsp;Shuji Yamamoto\",\"doi\":\"10.1016/j.jnt.2024.04.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we develop an explicit method to express finite algebraic numbers (in particular, certain idempotents among them) in terms of linear recurrent sequences, and give applications to the characterization of the splitting primes in a given finite Galois extension over the rational field.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022314X24001100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X24001100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们开发了一种用线性循环序列表达有限代数数(特别是其中某些幂级数)的明确方法,并将其应用于有理域上给定有限伽罗瓦扩展中分裂素数的表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
The ring of finite algebraic numbers and its application to the law of decomposition of primes

In this paper, we develop an explicit method to express finite algebraic numbers (in particular, certain idempotents among them) in terms of linear recurrent sequences, and give applications to the characterization of the splitting primes in a given finite Galois extension over the rational field.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信