{"title":"了解椎间盘的恢复:体内和体外研究综述","authors":"Faten Feki, Fahmi Zaïri, Abderrahman Tamoud, Melissa Moulart, Rym Taktak, Nader Haddar, Fahed Zaïri","doi":"10.1007/s42235-024-00542-2","DOIUrl":null,"url":null,"abstract":"<div><p>Within the consistent daily rhythm of human life, intervertebral discs endure a variety of complex loads beyond the influences of gravity and muscle forces, leading to significant morphological changes (in terms of volume, area, and height) as well as biomechanical alterations, including an increase in disc stiffness and a decrease in intradiscal pressure. Remarkably, the discs demonstrate an ability to regain their original morphological and biomechanical characteristics after a period of nocturnal rest. The preservation of normal disc function is critically dependent on this recovery phase, which serves to forestall premature disc degeneration. This phenomenon of disc recovery has been extensively documented through numerous in vivo studies employing advanced clinical techniques such as Magnetic Resonance Imaging (MRI), stadiometry, and intradiscal pressure measurement. However, the findings from in vitro studies present a more complex picture, with reports varying between full recovery and only partial recuperation of the disc properties. Moreover, research focusing on degenerated discs in vitro has shed light on the quantifiable impact of degeneration on the disc ability to recover. Fluid dynamics within the disc are considered a primary factor in recovery, yet the disc intricate multiscale structure and its viscoelastic properties also play key roles. These elements interact in complex ways to influence the recovery mechanism, particularly in relation to the overall health of the disc. The objective of this review is to collate, analyze, and critically evaluate the existing body of in vivo and in vitro research on this topic, providing a comprehensive understanding of disc recovery processes. Such understanding offers a blueprint for future advancements in medical treatments and bionic engineering solutions designed to mimic, support, and enhance the natural recovery processes of intervertebral discs.</p></div>","PeriodicalId":614,"journal":{"name":"Journal of Bionic Engineering","volume":"21 4","pages":"1919 - 1948"},"PeriodicalIF":4.9000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding the Recovery of the Intervertebral Disc: A Comprehensive Review of In Vivo and In Vitro Studies\",\"authors\":\"Faten Feki, Fahmi Zaïri, Abderrahman Tamoud, Melissa Moulart, Rym Taktak, Nader Haddar, Fahed Zaïri\",\"doi\":\"10.1007/s42235-024-00542-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Within the consistent daily rhythm of human life, intervertebral discs endure a variety of complex loads beyond the influences of gravity and muscle forces, leading to significant morphological changes (in terms of volume, area, and height) as well as biomechanical alterations, including an increase in disc stiffness and a decrease in intradiscal pressure. Remarkably, the discs demonstrate an ability to regain their original morphological and biomechanical characteristics after a period of nocturnal rest. The preservation of normal disc function is critically dependent on this recovery phase, which serves to forestall premature disc degeneration. This phenomenon of disc recovery has been extensively documented through numerous in vivo studies employing advanced clinical techniques such as Magnetic Resonance Imaging (MRI), stadiometry, and intradiscal pressure measurement. However, the findings from in vitro studies present a more complex picture, with reports varying between full recovery and only partial recuperation of the disc properties. Moreover, research focusing on degenerated discs in vitro has shed light on the quantifiable impact of degeneration on the disc ability to recover. Fluid dynamics within the disc are considered a primary factor in recovery, yet the disc intricate multiscale structure and its viscoelastic properties also play key roles. These elements interact in complex ways to influence the recovery mechanism, particularly in relation to the overall health of the disc. The objective of this review is to collate, analyze, and critically evaluate the existing body of in vivo and in vitro research on this topic, providing a comprehensive understanding of disc recovery processes. Such understanding offers a blueprint for future advancements in medical treatments and bionic engineering solutions designed to mimic, support, and enhance the natural recovery processes of intervertebral discs.</p></div>\",\"PeriodicalId\":614,\"journal\":{\"name\":\"Journal of Bionic Engineering\",\"volume\":\"21 4\",\"pages\":\"1919 - 1948\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bionic Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42235-024-00542-2\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bionic Engineering","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s42235-024-00542-2","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Understanding the Recovery of the Intervertebral Disc: A Comprehensive Review of In Vivo and In Vitro Studies
Within the consistent daily rhythm of human life, intervertebral discs endure a variety of complex loads beyond the influences of gravity and muscle forces, leading to significant morphological changes (in terms of volume, area, and height) as well as biomechanical alterations, including an increase in disc stiffness and a decrease in intradiscal pressure. Remarkably, the discs demonstrate an ability to regain their original morphological and biomechanical characteristics after a period of nocturnal rest. The preservation of normal disc function is critically dependent on this recovery phase, which serves to forestall premature disc degeneration. This phenomenon of disc recovery has been extensively documented through numerous in vivo studies employing advanced clinical techniques such as Magnetic Resonance Imaging (MRI), stadiometry, and intradiscal pressure measurement. However, the findings from in vitro studies present a more complex picture, with reports varying between full recovery and only partial recuperation of the disc properties. Moreover, research focusing on degenerated discs in vitro has shed light on the quantifiable impact of degeneration on the disc ability to recover. Fluid dynamics within the disc are considered a primary factor in recovery, yet the disc intricate multiscale structure and its viscoelastic properties also play key roles. These elements interact in complex ways to influence the recovery mechanism, particularly in relation to the overall health of the disc. The objective of this review is to collate, analyze, and critically evaluate the existing body of in vivo and in vitro research on this topic, providing a comprehensive understanding of disc recovery processes. Such understanding offers a blueprint for future advancements in medical treatments and bionic engineering solutions designed to mimic, support, and enhance the natural recovery processes of intervertebral discs.
期刊介绍:
The Journal of Bionic Engineering (JBE) is a peer-reviewed journal that publishes original research papers and reviews that apply the knowledge learned from nature and biological systems to solve concrete engineering problems. The topics that JBE covers include but are not limited to:
Mechanisms, kinematical mechanics and control of animal locomotion, development of mobile robots with walking (running and crawling), swimming or flying abilities inspired by animal locomotion.
Structures, morphologies, composition and physical properties of natural and biomaterials; fabrication of new materials mimicking the properties and functions of natural and biomaterials.
Biomedical materials, artificial organs and tissue engineering for medical applications; rehabilitation equipment and devices.
Development of bioinspired computation methods and artificial intelligence for engineering applications.