基于 Aquila 优化器的物联网智能城市交通拥堵混合预测模型

IF 5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Ayushi Chahal, Preeti Gulia, Nasib Singh Gill, Nishat Sultana
{"title":"基于 Aquila 优化器的物联网智能城市交通拥堵混合预测模型","authors":"Ayushi Chahal,&nbsp;Preeti Gulia,&nbsp;Nasib Singh Gill,&nbsp;Nishat Sultana","doi":"10.1155/2024/5577278","DOIUrl":null,"url":null,"abstract":"<p>Effective traffic congestion prediction is need of the hour in a modern smart city to save time and improve the quality of life for citizens. In this study, AB_AO (ARIMA Bi-LSTM using Aquila optimizer), a hybrid predictive model, is proposed using the most effective time-series data prediction statistical model ARIMA (Autoregressive Integrated Moving Average) and sequential predictive Deep Learning (DL) technique LSTM (Long Short-Term Memory) which helps in traffic congestion prediction with a minimum error rate. Also, the Aquila optimizer (AO) is used to elevate the adequacy of the AB_AO model. Three road traffic datasets of different cities from the “CityPulse EU FP7 project” are used to implement the proposed hybrid model. In a time-series dataset, two components need to be handled with care, i.e., linear and nonlinear. In this study, the ARIMA model has been used to manage linear components and Bi-LSTM is used to handle nonlinear components of the time-series dataset. The Aquila Optimizer (AO) is used for hyperparametric tuning to enhance the performance of Bi-LSTM. Error measurement parameters like the Mean Absolute Error (MAE), Mean Squared Error (MSE), and Mean Absolute Percentage Error (MAPE) are used to validate the results. A detailed mathematical and empirical analysis is given to justify the performance of the AB_AO model using an ablation study and comparative analysis. The AB_AO model acquires more stable and precise results with MSE as 18.78, MAE as 3.18, and MAPE as 0.21 than other models. It may further help to predict the vehicle count on the road, which may be of great help in reducing wastage of time in traffic congestion.</p>","PeriodicalId":14089,"journal":{"name":"International Journal of Intelligent Systems","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aquila Optimizer-Based Hybrid Predictive Model for Traffic Congestion in an IoT-Enabled Smart City\",\"authors\":\"Ayushi Chahal,&nbsp;Preeti Gulia,&nbsp;Nasib Singh Gill,&nbsp;Nishat Sultana\",\"doi\":\"10.1155/2024/5577278\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Effective traffic congestion prediction is need of the hour in a modern smart city to save time and improve the quality of life for citizens. In this study, AB_AO (ARIMA Bi-LSTM using Aquila optimizer), a hybrid predictive model, is proposed using the most effective time-series data prediction statistical model ARIMA (Autoregressive Integrated Moving Average) and sequential predictive Deep Learning (DL) technique LSTM (Long Short-Term Memory) which helps in traffic congestion prediction with a minimum error rate. Also, the Aquila optimizer (AO) is used to elevate the adequacy of the AB_AO model. Three road traffic datasets of different cities from the “CityPulse EU FP7 project” are used to implement the proposed hybrid model. In a time-series dataset, two components need to be handled with care, i.e., linear and nonlinear. In this study, the ARIMA model has been used to manage linear components and Bi-LSTM is used to handle nonlinear components of the time-series dataset. The Aquila Optimizer (AO) is used for hyperparametric tuning to enhance the performance of Bi-LSTM. Error measurement parameters like the Mean Absolute Error (MAE), Mean Squared Error (MSE), and Mean Absolute Percentage Error (MAPE) are used to validate the results. A detailed mathematical and empirical analysis is given to justify the performance of the AB_AO model using an ablation study and comparative analysis. The AB_AO model acquires more stable and precise results with MSE as 18.78, MAE as 3.18, and MAPE as 0.21 than other models. It may further help to predict the vehicle count on the road, which may be of great help in reducing wastage of time in traffic congestion.</p>\",\"PeriodicalId\":14089,\"journal\":{\"name\":\"International Journal of Intelligent Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Intelligent Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/5577278\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/5577278","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

现代智能城市需要有效的交通拥堵预测,以节省时间并提高市民的生活质量。本研究提出了一种混合预测模型 AB_AO(ARIMA Bi-LSTM using Aquila optimizer),它采用了最有效的时间序列数据预测统计模型 ARIMA(自回归整合移动平均)和序列预测深度学习(DL)技术 LSTM(长短期记忆),有助于以最小的误差率进行交通拥堵预测。此外,Aquila 优化器(AO)也用于提高 AB_AO 模型的适当性。为实现所提出的混合模型,我们使用了 "CityPulse EU FP7 项目 "中不同城市的三个道路交通数据集。在时间序列数据集中,需要谨慎处理两个组成部分,即线性和非线性。在本研究中,ARIMA 模型用于管理线性成分,Bi-LSTM 用于处理时间序列数据集的非线性成分。Aquila 优化器 (AO) 用于超参数调整,以提高 Bi-LSTM 的性能。平均绝对误差 (MAE)、平均平方误差 (MSE) 和平均绝对百分比误差 (MAPE) 等误差测量参数用于验证结果。详细的数学和实证分析证明了 AB_AO 模型的性能,并使用了消融研究和比较分析。与其他模型相比,AB_AO 模型获得了更加稳定和精确的结果,MSE 为 18.78,MAE 为 3.18,MAPE 为 0.21。它可以进一步帮助预测道路上的车辆数量,对减少交通拥堵中的时间浪费有很大帮助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Aquila Optimizer-Based Hybrid Predictive Model for Traffic Congestion in an IoT-Enabled Smart City

Effective traffic congestion prediction is need of the hour in a modern smart city to save time and improve the quality of life for citizens. In this study, AB_AO (ARIMA Bi-LSTM using Aquila optimizer), a hybrid predictive model, is proposed using the most effective time-series data prediction statistical model ARIMA (Autoregressive Integrated Moving Average) and sequential predictive Deep Learning (DL) technique LSTM (Long Short-Term Memory) which helps in traffic congestion prediction with a minimum error rate. Also, the Aquila optimizer (AO) is used to elevate the adequacy of the AB_AO model. Three road traffic datasets of different cities from the “CityPulse EU FP7 project” are used to implement the proposed hybrid model. In a time-series dataset, two components need to be handled with care, i.e., linear and nonlinear. In this study, the ARIMA model has been used to manage linear components and Bi-LSTM is used to handle nonlinear components of the time-series dataset. The Aquila Optimizer (AO) is used for hyperparametric tuning to enhance the performance of Bi-LSTM. Error measurement parameters like the Mean Absolute Error (MAE), Mean Squared Error (MSE), and Mean Absolute Percentage Error (MAPE) are used to validate the results. A detailed mathematical and empirical analysis is given to justify the performance of the AB_AO model using an ablation study and comparative analysis. The AB_AO model acquires more stable and precise results with MSE as 18.78, MAE as 3.18, and MAPE as 0.21 than other models. It may further help to predict the vehicle count on the road, which may be of great help in reducing wastage of time in traffic congestion.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Intelligent Systems
International Journal of Intelligent Systems 工程技术-计算机:人工智能
CiteScore
11.30
自引率
14.30%
发文量
304
审稿时长
9 months
期刊介绍: The International Journal of Intelligent Systems serves as a forum for individuals interested in tapping into the vast theories based on intelligent systems construction. With its peer-reviewed format, the journal explores several fascinating editorials written by today''s experts in the field. Because new developments are being introduced each day, there''s much to be learned — examination, analysis creation, information retrieval, man–computer interactions, and more. The International Journal of Intelligent Systems uses charts and illustrations to demonstrate these ground-breaking issues, and encourages readers to share their thoughts and experiences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信