哈伊纳尔-马特图、科恩实数和不连型猜测

IF 0.8 3区 数学 Q2 MATHEMATICS
Mathematika Pub Date : 2024-05-28 DOI:10.1112/mtk.12261
Chris Lambie-Hanson, Dávid Uhrik
{"title":"哈伊纳尔-马特图、科恩实数和不连型猜测","authors":"Chris Lambie-Hanson,&nbsp;Dávid Uhrik","doi":"10.1112/mtk.12261","DOIUrl":null,"url":null,"abstract":"<p>A Hajnal–Máté graph is an uncountably chromatic graph on <span></span><math></math> satisfying a certain natural sparseness condition. We investigate Hajnal–Máté graphs and generalizations thereof, focusing on the existence of Hajnal–Máté graphs in models resulting from adding a single Cohen real. In particular, answering a question of Dániel Soukup, we show that such models necessarily contain triangle-free Hajnal–Máté graphs. In the process, we isolate a weakening of club guessing called <i>disjoint-type guessing</i> that we feel is of interest in its own right. We show that disjoint-type guessing is independent of <span></span><math></math> and, if disjoint-type guessing holds in the ground model, then the forcing extension by a single Cohen real contains Hajnal–Máté graphs <span></span><math></math> such that the chromatic numbers of finite subgraphs of <span></span><math></math> grow arbitrarily slowly.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":"70 3","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.12261","citationCount":"0","resultStr":"{\"title\":\"Hajnal–Máté graphs, Cohen reals, and disjoint-type guessing\",\"authors\":\"Chris Lambie-Hanson,&nbsp;Dávid Uhrik\",\"doi\":\"10.1112/mtk.12261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A Hajnal–Máté graph is an uncountably chromatic graph on <span></span><math></math> satisfying a certain natural sparseness condition. We investigate Hajnal–Máté graphs and generalizations thereof, focusing on the existence of Hajnal–Máté graphs in models resulting from adding a single Cohen real. In particular, answering a question of Dániel Soukup, we show that such models necessarily contain triangle-free Hajnal–Máté graphs. In the process, we isolate a weakening of club guessing called <i>disjoint-type guessing</i> that we feel is of interest in its own right. We show that disjoint-type guessing is independent of <span></span><math></math> and, if disjoint-type guessing holds in the ground model, then the forcing extension by a single Cohen real contains Hajnal–Máté graphs <span></span><math></math> such that the chromatic numbers of finite subgraphs of <span></span><math></math> grow arbitrarily slowly.</p>\",\"PeriodicalId\":18463,\"journal\":{\"name\":\"Mathematika\",\"volume\":\"70 3\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.12261\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematika\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/mtk.12261\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematika","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/mtk.12261","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Hajnal-Máté 图是满足特定自然稀疏性条件的不可数色度图。我们研究了 Hajnal-Máté 图及其广义,重点是在添加一个科恩实数后产生的模型中是否存在 Hajnal-Máté 图。特别是,为了回答达尼尔-苏库普(Dániel Soukup)的一个问题,我们证明了这类模型必然包含无三角形的 Hajnal-Máté 图。在这一过程中,我们分离出了一种俱乐部猜测的弱化形式,称为 "脱节型猜测",我们认为它本身就很有趣。我们证明了脱节型猜测与地面模型无关,而且如果脱节型猜测在地面模型中成立,那么由单个科恩实数强制扩展的模型就包含Hajnal-Máté图,这样有限子图的色度数就会任意缓慢地增长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hajnal–Máté graphs, Cohen reals, and disjoint-type guessing

A Hajnal–Máté graph is an uncountably chromatic graph on satisfying a certain natural sparseness condition. We investigate Hajnal–Máté graphs and generalizations thereof, focusing on the existence of Hajnal–Máté graphs in models resulting from adding a single Cohen real. In particular, answering a question of Dániel Soukup, we show that such models necessarily contain triangle-free Hajnal–Máté graphs. In the process, we isolate a weakening of club guessing called disjoint-type guessing that we feel is of interest in its own right. We show that disjoint-type guessing is independent of and, if disjoint-type guessing holds in the ground model, then the forcing extension by a single Cohen real contains Hajnal–Máté graphs such that the chromatic numbers of finite subgraphs of grow arbitrarily slowly.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematika
Mathematika MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.40
自引率
0.00%
发文量
60
审稿时长
>12 weeks
期刊介绍: Mathematika publishes both pure and applied mathematical articles and has done so continuously since its founding by Harold Davenport in the 1950s. The traditional emphasis has been towards the purer side of mathematics but applied mathematics and articles addressing both aspects are equally welcome. The journal is published by the London Mathematical Society, on behalf of its owner University College London, and will continue to publish research papers of the highest mathematical quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信