{"title":"非局部竞争的分支随机行走","authors":"Pascal Maillard, Sarah Penington","doi":"10.1112/jlms.12919","DOIUrl":null,"url":null,"abstract":"<p>We study the Bolker–Pacala–Dieckmann–Law (BPDL) model of population dynamics in the regime of large population density. The BPDL model is a particle system in which particles reproduce, move randomly in space and compete with each other locally. We rigorously prove global survival as well as a shape theorem describing the asymptotic spread of the population, when the population density is sufficiently large. In contrast to most previous studies, we allow the competition kernel to have an arbitrary, even infinite range, whence the term <i>non-local competition</i>. This makes the particle system non-monotone and of infinite-range dependence, meaning that the usual comparison arguments break down and have to be replaced by a more hands-on approach. Some ideas in the proof are inspired by works on the non-local Fisher-KPP equation, but the stochasticity of the model creates new difficulties.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.12919","citationCount":"0","resultStr":"{\"title\":\"Branching random walk with non-local competition\",\"authors\":\"Pascal Maillard, Sarah Penington\",\"doi\":\"10.1112/jlms.12919\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the Bolker–Pacala–Dieckmann–Law (BPDL) model of population dynamics in the regime of large population density. The BPDL model is a particle system in which particles reproduce, move randomly in space and compete with each other locally. We rigorously prove global survival as well as a shape theorem describing the asymptotic spread of the population, when the population density is sufficiently large. In contrast to most previous studies, we allow the competition kernel to have an arbitrary, even infinite range, whence the term <i>non-local competition</i>. This makes the particle system non-monotone and of infinite-range dependence, meaning that the usual comparison arguments break down and have to be replaced by a more hands-on approach. Some ideas in the proof are inspired by works on the non-local Fisher-KPP equation, but the stochasticity of the model creates new difficulties.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.12919\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.12919\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.12919","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
We study the Bolker–Pacala–Dieckmann–Law (BPDL) model of population dynamics in the regime of large population density. The BPDL model is a particle system in which particles reproduce, move randomly in space and compete with each other locally. We rigorously prove global survival as well as a shape theorem describing the asymptotic spread of the population, when the population density is sufficiently large. In contrast to most previous studies, we allow the competition kernel to have an arbitrary, even infinite range, whence the term non-local competition. This makes the particle system non-monotone and of infinite-range dependence, meaning that the usual comparison arguments break down and have to be replaced by a more hands-on approach. Some ideas in the proof are inspired by works on the non-local Fisher-KPP equation, but the stochasticity of the model creates new difficulties.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.