{"title":"最差近似有理数","authors":"Boris Springborn","doi":"10.1016/j.jnt.2024.04.013","DOIUrl":null,"url":null,"abstract":"<div><p>We classify and enumerate all rational numbers with approximation constant at least <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac></math></span> using hyperbolic geometry. Rational numbers correspond to geodesics in the modular torus with both ends in the cusp, and the approximation constant measures how far they stay out of the cusp neighborhood in between. Compared to the original approach, the geometric point of view eliminates the need to discuss the intricate symbolic dynamics of continued fraction representations, and it clarifies the distinction between the two types of worst approximable rationals: (1) There is a plane forest of <em>Markov fractions</em> whose denominators are Markov numbers. They correspond to simple geodesics in the modular torus with both ends in the cusp. (2) For each Markov fraction, there are two infinite sequences of <em>companions</em>, which correspond to non-simple geodesics with both ends in the cusp that do not intersect a pair of disjoint simple geodesics, one with both ends in the cusp and one closed.</p></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"263 ","pages":"Pages 153-205"},"PeriodicalIF":0.6000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022314X24001148/pdfft?md5=05527a34f5adb10106a0ae68575e41cc&pid=1-s2.0-S0022314X24001148-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The worst approximable rational numbers\",\"authors\":\"Boris Springborn\",\"doi\":\"10.1016/j.jnt.2024.04.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We classify and enumerate all rational numbers with approximation constant at least <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac></math></span> using hyperbolic geometry. Rational numbers correspond to geodesics in the modular torus with both ends in the cusp, and the approximation constant measures how far they stay out of the cusp neighborhood in between. Compared to the original approach, the geometric point of view eliminates the need to discuss the intricate symbolic dynamics of continued fraction representations, and it clarifies the distinction between the two types of worst approximable rationals: (1) There is a plane forest of <em>Markov fractions</em> whose denominators are Markov numbers. They correspond to simple geodesics in the modular torus with both ends in the cusp. (2) For each Markov fraction, there are two infinite sequences of <em>companions</em>, which correspond to non-simple geodesics with both ends in the cusp that do not intersect a pair of disjoint simple geodesics, one with both ends in the cusp and one closed.</p></div>\",\"PeriodicalId\":50110,\"journal\":{\"name\":\"Journal of Number Theory\",\"volume\":\"263 \",\"pages\":\"Pages 153-205\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0022314X24001148/pdfft?md5=05527a34f5adb10106a0ae68575e41cc&pid=1-s2.0-S0022314X24001148-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022314X24001148\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X24001148","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
We classify and enumerate all rational numbers with approximation constant at least using hyperbolic geometry. Rational numbers correspond to geodesics in the modular torus with both ends in the cusp, and the approximation constant measures how far they stay out of the cusp neighborhood in between. Compared to the original approach, the geometric point of view eliminates the need to discuss the intricate symbolic dynamics of continued fraction representations, and it clarifies the distinction between the two types of worst approximable rationals: (1) There is a plane forest of Markov fractions whose denominators are Markov numbers. They correspond to simple geodesics in the modular torus with both ends in the cusp. (2) For each Markov fraction, there are two infinite sequences of companions, which correspond to non-simple geodesics with both ends in the cusp that do not intersect a pair of disjoint simple geodesics, one with both ends in the cusp and one closed.
期刊介绍:
The Journal of Number Theory (JNT) features selected research articles that represent the broad spectrum of interest in contemporary number theory and allied areas. A valuable resource for mathematicians, the journal provides an international forum for the publication of original research in this field.
The Journal of Number Theory is encouraging submissions of quality, long articles where most or all of the technical details are included. The journal now considers and welcomes also papers in Computational Number Theory.
Starting in May 2019, JNT will have a new format with 3 sections:
JNT Prime targets (possibly very long with complete proofs) high impact papers. Articles published in this section will be granted 1 year promotional open access.
JNT General Section is for shorter papers. We particularly encourage submission from junior researchers. Every attempt will be made to expedite the review process for such submissions.
Computational JNT . This section aims to provide a forum to disseminate contributions which make significant use of computer calculations to derive novel number theoretic results. There will be an online repository where supplementary codes and data can be stored.