改善低成本磷光指纹粉的流动动力学和储存寿命。

IF 1.5 4区 医学 Q2 MEDICINE, LEGAL
Jodie L. Harrington, William J. Gee PhD
{"title":"改善低成本磷光指纹粉的流动动力学和储存寿命。","authors":"Jodie L. Harrington,&nbsp;William J. Gee PhD","doi":"10.1111/1556-4029.15549","DOIUrl":null,"url":null,"abstract":"<p>An inexpensive, commercially available doped strontium aluminate phosphor with long-lived afterglow was prepared as a luminescent fingerprint dusting powder suited for challenging, highly patterned substrates; however, prolonged exposure to humidity was found to reduce that powder's affinity for fingermarks. Here, an enhanced preparation for synthesizing that fingerprint dusting powder is presented that prevents powder aggregation and loss of function upon exposure to humid environments. This was achieved by introducing a flow regulator during synthesis: hydrophobic silica SIPERNAT® D10 or SIPERNAT® D17. Increasing the hydrophobicity of the powder prevents aggregation by inhibiting the uptake of water, thereby improving the material's flow dynamics and transfer behavior from brush to fingermark. The angle of repose and flow characteristics made by the modified powders were quantified, with excellent affinity for fingermarks observed, even after being stored under 85% (±5%) humidity for 4 weeks. A preliminary comparison of the performance of the modified hydrophobic powders relative to the unmodified precursor revealed that more of the SIPERNAT® treated powder typically adhered to fingermarks while simultaneously imparting less background development. In addition, fewer clumps of particulate were observed in the developed fingermarks after addition of a hydrophobic flow regulator. This technical report outlines the updated method for synthesizing the fingerprint powder, with summarized flow performance results, and a demonstration of the modified powder's affinity for simulated fingermark evidence.</p>","PeriodicalId":15743,"journal":{"name":"Journal of forensic sciences","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1556-4029.15549","citationCount":"0","resultStr":"{\"title\":\"Improving flow dynamics and storage longevity of a low-cost phosphorescent fingerprint powder\",\"authors\":\"Jodie L. Harrington,&nbsp;William J. Gee PhD\",\"doi\":\"10.1111/1556-4029.15549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An inexpensive, commercially available doped strontium aluminate phosphor with long-lived afterglow was prepared as a luminescent fingerprint dusting powder suited for challenging, highly patterned substrates; however, prolonged exposure to humidity was found to reduce that powder's affinity for fingermarks. Here, an enhanced preparation for synthesizing that fingerprint dusting powder is presented that prevents powder aggregation and loss of function upon exposure to humid environments. This was achieved by introducing a flow regulator during synthesis: hydrophobic silica SIPERNAT® D10 or SIPERNAT® D17. Increasing the hydrophobicity of the powder prevents aggregation by inhibiting the uptake of water, thereby improving the material's flow dynamics and transfer behavior from brush to fingermark. The angle of repose and flow characteristics made by the modified powders were quantified, with excellent affinity for fingermarks observed, even after being stored under 85% (±5%) humidity for 4 weeks. A preliminary comparison of the performance of the modified hydrophobic powders relative to the unmodified precursor revealed that more of the SIPERNAT® treated powder typically adhered to fingermarks while simultaneously imparting less background development. In addition, fewer clumps of particulate were observed in the developed fingermarks after addition of a hydrophobic flow regulator. This technical report outlines the updated method for synthesizing the fingerprint powder, with summarized flow performance results, and a demonstration of the modified powder's affinity for simulated fingermark evidence.</p>\",\"PeriodicalId\":15743,\"journal\":{\"name\":\"Journal of forensic sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1556-4029.15549\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of forensic sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1556-4029.15549\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, LEGAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of forensic sciences","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1556-4029.15549","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, LEGAL","Score":null,"Total":0}
引用次数: 0

摘要

一种价格低廉、可在市场上买到的掺杂铝酸锶荧光粉具有长效余辉,被制备成发光指纹粉末,适用于具有挑战性的高图案基底;然而,长期暴露在潮湿环境中会降低这种粉末对指印的亲和力。本文介绍了一种合成指纹粉末的增强型制备方法,它能防止粉末在暴露于潮湿环境中时发生聚集并丧失功能。这是通过在合成过程中引入流量调节器来实现的:疏水性二氧化硅 SIPERNAT® D10 或 SIPERNAT® D17。增加粉末的疏水性可以通过抑制水分的吸收来防止聚集,从而改善材料的流动动态和从刷子到指印的转移行为。对改性粉末的静止角和流动特性进行了量化,即使在湿度为 85%(±5%)的条件下存放 4 周,也能观察到其对指痕具有极佳的亲和力。对改性疏水性粉末与未改性前体的性能进行初步比较后发现,经过 SIPERNAT® 处理的粉末通常能粘附更多的指痕,同时还能减少背景显影。此外,添加疏水性流量调节剂后,在显影指痕中观察到的颗粒团块更少。本技术报告概述了合成指纹粉末的最新方法,总结了流动性能结果,并展示了改良粉末对模拟指印证据的亲和力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Improving flow dynamics and storage longevity of a low-cost phosphorescent fingerprint powder

Improving flow dynamics and storage longevity of a low-cost phosphorescent fingerprint powder

An inexpensive, commercially available doped strontium aluminate phosphor with long-lived afterglow was prepared as a luminescent fingerprint dusting powder suited for challenging, highly patterned substrates; however, prolonged exposure to humidity was found to reduce that powder's affinity for fingermarks. Here, an enhanced preparation for synthesizing that fingerprint dusting powder is presented that prevents powder aggregation and loss of function upon exposure to humid environments. This was achieved by introducing a flow regulator during synthesis: hydrophobic silica SIPERNAT® D10 or SIPERNAT® D17. Increasing the hydrophobicity of the powder prevents aggregation by inhibiting the uptake of water, thereby improving the material's flow dynamics and transfer behavior from brush to fingermark. The angle of repose and flow characteristics made by the modified powders were quantified, with excellent affinity for fingermarks observed, even after being stored under 85% (±5%) humidity for 4 weeks. A preliminary comparison of the performance of the modified hydrophobic powders relative to the unmodified precursor revealed that more of the SIPERNAT® treated powder typically adhered to fingermarks while simultaneously imparting less background development. In addition, fewer clumps of particulate were observed in the developed fingermarks after addition of a hydrophobic flow regulator. This technical report outlines the updated method for synthesizing the fingerprint powder, with summarized flow performance results, and a demonstration of the modified powder's affinity for simulated fingermark evidence.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of forensic sciences
Journal of forensic sciences 医学-医学:法
CiteScore
4.00
自引率
12.50%
发文量
215
审稿时长
2 months
期刊介绍: The Journal of Forensic Sciences (JFS) is the official publication of the American Academy of Forensic Sciences (AAFS). It is devoted to the publication of original investigations, observations, scholarly inquiries and reviews in various branches of the forensic sciences. These include anthropology, criminalistics, digital and multimedia sciences, engineering and applied sciences, pathology/biology, psychiatry and behavioral science, jurisprudence, odontology, questioned documents, and toxicology. Similar submissions dealing with forensic aspects of other sciences and the social sciences are also accepted, as are submissions dealing with scientifically sound emerging science disciplines. The content and/or views expressed in the JFS are not necessarily those of the AAFS, the JFS Editorial Board, the organizations with which authors are affiliated, or the publisher of JFS. All manuscript submissions are double-blind peer-reviewed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信