{"title":"针对二元响应的不等方差分层信号检测模型。","authors":"Martin Lages","doi":"10.3758/s13423-024-02504-5","DOIUrl":null,"url":null,"abstract":"<p><p>Gaussian signal detection models with equal variance are commonly used in simple yes-no detection and discrimination tasks whereas more flexible models with unequal variance require additional information. Here, a hierarchical Bayesian model with equal variance is extended to an unequal-variance model by exploiting variability of hit and false-alarm rates in a random sample of participants. This hierarchical model is investigated analytically, in simulations and in applications to existing data sets. The results suggest that signal variance and other parameters can be accurately estimated if plausible assumptions are met. It is concluded that the model provides a promising alternative to the ubiquitous equal-variance model for binary data.</p>","PeriodicalId":20763,"journal":{"name":"Psychonomic Bulletin & Review","volume":" ","pages":"2534-2557"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11680650/pdf/","citationCount":"0","resultStr":"{\"title\":\"A hierarchical signal detection model with unequal variance for binary responses.\",\"authors\":\"Martin Lages\",\"doi\":\"10.3758/s13423-024-02504-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Gaussian signal detection models with equal variance are commonly used in simple yes-no detection and discrimination tasks whereas more flexible models with unequal variance require additional information. Here, a hierarchical Bayesian model with equal variance is extended to an unequal-variance model by exploiting variability of hit and false-alarm rates in a random sample of participants. This hierarchical model is investigated analytically, in simulations and in applications to existing data sets. The results suggest that signal variance and other parameters can be accurately estimated if plausible assumptions are met. It is concluded that the model provides a promising alternative to the ubiquitous equal-variance model for binary data.</p>\",\"PeriodicalId\":20763,\"journal\":{\"name\":\"Psychonomic Bulletin & Review\",\"volume\":\" \",\"pages\":\"2534-2557\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11680650/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psychonomic Bulletin & Review\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.3758/s13423-024-02504-5\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHOLOGY, EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychonomic Bulletin & Review","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.3758/s13423-024-02504-5","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PSYCHOLOGY, EXPERIMENTAL","Score":null,"Total":0}
A hierarchical signal detection model with unequal variance for binary responses.
Gaussian signal detection models with equal variance are commonly used in simple yes-no detection and discrimination tasks whereas more flexible models with unequal variance require additional information. Here, a hierarchical Bayesian model with equal variance is extended to an unequal-variance model by exploiting variability of hit and false-alarm rates in a random sample of participants. This hierarchical model is investigated analytically, in simulations and in applications to existing data sets. The results suggest that signal variance and other parameters can be accurately estimated if plausible assumptions are met. It is concluded that the model provides a promising alternative to the ubiquitous equal-variance model for binary data.
期刊介绍:
The journal provides coverage spanning a broad spectrum of topics in all areas of experimental psychology. The journal is primarily dedicated to the publication of theory and review articles and brief reports of outstanding experimental work. Areas of coverage include cognitive psychology broadly construed, including but not limited to action, perception, & attention, language, learning & memory, reasoning & decision making, and social cognition. We welcome submissions that approach these issues from a variety of perspectives such as behavioral measurements, comparative psychology, development, evolutionary psychology, genetics, neuroscience, and quantitative/computational modeling. We particularly encourage integrative research that crosses traditional content and methodological boundaries.