用于提高生物利用度的槲皮素纳米晶体:不同功能稳定剂对体外/体内药物性能的影响

IF 2.6 4区 医学 Q2 PHARMACOLOGY & PHARMACY
Yuwen Zhu, Fei Hu, Chengying Shen, Baode Shen, Hailong Yuan
{"title":"用于提高生物利用度的槲皮素纳米晶体:不同功能稳定剂对体外/体内药物性能的影响","authors":"Yuwen Zhu, Fei Hu, Chengying Shen, Baode Shen, Hailong Yuan","doi":"10.1080/10837450.2024.2361654","DOIUrl":null,"url":null,"abstract":"<p><p>The purpose of this study was to investigate the impact of different functional stabilizers on <i>in vitro/in vivo</i> drug performances after oral administration of drug nanocrystals. Quercetin nanocrystals (QT-NCs) respectively stabilized by five types of functional stabilizers, including hydroxypropyl methyl cellulose E15 (HPMC E15), poloxamer 407 (P407), poloxamer 188 (P188), D-α-tocopherol polyethylene glycol succinate (TPGS), and glycyrrhizin acid (GL), were fabricated by wet media milling technique. The particle size, morphology, physical state, drug solubility, drug dissolution <i>in vitro</i>, and orally pharmacokinetic behaviors of all QT-NCs were investigated. All QT-NCs with similar particle size about 200 nm were obtained by controlling milling speed and milling time. No significant differences in particles shape and crystalline nature were found for QT-NCs stabilized by different functional stabilizers. But the solubility and dissolution of QT-NCs were significantly influenced by the different functional stabilizers. The AUC<sub>0∼</sub><i><sub>t</sub></i> of all QT-NCs after oral administration was in the following order: QT-NCs/P188 ≈ QT-NCs/HPMC E15 > QT-NCs/GL > QT-NCs/P407 ≈ QT-NCs/TPGS, and the <i>C</i><sub>max</sub> showed an order of QT-NCs/P407 > QT-NCs/P188 ≈ QT-NCs/GL > QT-NCs/HPMC E15 > QT-NCs/TPGS. Both of QT-NCs/P407 and QT-NCs/TPGS exhibited faster oral absorption with <i>T</i><sub>max</sub> at 0.5 h and 0.83 h, respectively, while the other three QT-NCs (QT-NCs/P188, QT-NCs/GL and QT-NCs/HPMC E15) showed a relatively slow absorption with same <i>T</i><sub>max</sub> at 5.33 h. The longest MRT<sub>0∼</sub><i><sub>t</sub></i> (11.72 h) and <i>t</i><sub>1/2z</sub> (32.22 h) were observed for QT-NCs/HPMC E15. These results suggested that the different functional stabilizers could significantly influence on drug solubility, drug dissolution <i>in vitro</i> and orally pharmacokinetic behavior of QT-NCs, and it is possible to alter the drug dissolution <i>in vitro</i>, oral absorption and drug retention <i>in vivo</i> by changing the type of functional stabilizers in NCs preparation.</p>","PeriodicalId":20004,"journal":{"name":"Pharmaceutical Development and Technology","volume":" ","pages":"551-558"},"PeriodicalIF":2.6000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quercetin nanocrystals for bioavailability enhancement: impact of different functional stabilizers on <i>in vitro</i>/<i>in vivo</i> drug performances.\",\"authors\":\"Yuwen Zhu, Fei Hu, Chengying Shen, Baode Shen, Hailong Yuan\",\"doi\":\"10.1080/10837450.2024.2361654\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The purpose of this study was to investigate the impact of different functional stabilizers on <i>in vitro/in vivo</i> drug performances after oral administration of drug nanocrystals. Quercetin nanocrystals (QT-NCs) respectively stabilized by five types of functional stabilizers, including hydroxypropyl methyl cellulose E15 (HPMC E15), poloxamer 407 (P407), poloxamer 188 (P188), D-α-tocopherol polyethylene glycol succinate (TPGS), and glycyrrhizin acid (GL), were fabricated by wet media milling technique. The particle size, morphology, physical state, drug solubility, drug dissolution <i>in vitro</i>, and orally pharmacokinetic behaviors of all QT-NCs were investigated. All QT-NCs with similar particle size about 200 nm were obtained by controlling milling speed and milling time. No significant differences in particles shape and crystalline nature were found for QT-NCs stabilized by different functional stabilizers. But the solubility and dissolution of QT-NCs were significantly influenced by the different functional stabilizers. The AUC<sub>0∼</sub><i><sub>t</sub></i> of all QT-NCs after oral administration was in the following order: QT-NCs/P188 ≈ QT-NCs/HPMC E15 > QT-NCs/GL > QT-NCs/P407 ≈ QT-NCs/TPGS, and the <i>C</i><sub>max</sub> showed an order of QT-NCs/P407 > QT-NCs/P188 ≈ QT-NCs/GL > QT-NCs/HPMC E15 > QT-NCs/TPGS. Both of QT-NCs/P407 and QT-NCs/TPGS exhibited faster oral absorption with <i>T</i><sub>max</sub> at 0.5 h and 0.83 h, respectively, while the other three QT-NCs (QT-NCs/P188, QT-NCs/GL and QT-NCs/HPMC E15) showed a relatively slow absorption with same <i>T</i><sub>max</sub> at 5.33 h. The longest MRT<sub>0∼</sub><i><sub>t</sub></i> (11.72 h) and <i>t</i><sub>1/2z</sub> (32.22 h) were observed for QT-NCs/HPMC E15. These results suggested that the different functional stabilizers could significantly influence on drug solubility, drug dissolution <i>in vitro</i> and orally pharmacokinetic behavior of QT-NCs, and it is possible to alter the drug dissolution <i>in vitro</i>, oral absorption and drug retention <i>in vivo</i> by changing the type of functional stabilizers in NCs preparation.</p>\",\"PeriodicalId\":20004,\"journal\":{\"name\":\"Pharmaceutical Development and Technology\",\"volume\":\" \",\"pages\":\"551-558\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical Development and Technology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/10837450.2024.2361654\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Development and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10837450.2024.2361654","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在探讨不同功能稳定剂对纳米药物口服后体外/体内药效的影响。采用湿法介质研磨技术制备了分别由羟丙基甲基纤维素 E15(HPMC E15)、聚羟胺 407(P407)、聚羟胺 188(P188)、D-α-生育酚聚乙二醇琥珀酸酯(TPGS)和甘草酸(GL)等五种功能稳定剂稳定的槲皮素纳米晶(QT-NCs)。研究了所有 QT-NCs 的粒度、形态、物理状态、药物溶解度、药物体外溶解度和口服药物动力学行为。通过控制研磨速度和研磨时间,所有 QT-NCs 的粒径均在 200 nm 左右。经不同功能稳定剂稳定的 QT-NCs 在颗粒形状和结晶性质上没有明显差异。但不同功能稳定剂对 QT-NCs 的溶解度和溶解性有显著影响。所有QT-NC口服后的AUC0~t依次为QT-NCs/P188≈QT-NCs/HPMC E15>QT-NCs/GL>QT-NCs/P407≈QT-NCs/TPGS,Cmax依次为QT-NCs/P407>QT-NCs/P188≈QT-NCs/GL>QT-NCs/HPMC E15>QT-NCs/TPGS。QT-NCs/P407和QT-NCs/TPGS都表现出较快的口服吸收速度,Tmax分别为0.5 h和0.QT-NCs/HPMC E15的MRT0~t(11.72 h)和t1/2z(32.22 h)最长。这些结果表明,不同的功能稳定剂会对 QT-NCs 的药物溶解度、体外溶出度和口服药物动力学行为产生显著影响,可以通过改变 NCs 制备过程中功能稳定剂的种类来改变药物的体外溶出度、口服吸收和体内药物保留。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quercetin nanocrystals for bioavailability enhancement: impact of different functional stabilizers on in vitro/in vivo drug performances.

The purpose of this study was to investigate the impact of different functional stabilizers on in vitro/in vivo drug performances after oral administration of drug nanocrystals. Quercetin nanocrystals (QT-NCs) respectively stabilized by five types of functional stabilizers, including hydroxypropyl methyl cellulose E15 (HPMC E15), poloxamer 407 (P407), poloxamer 188 (P188), D-α-tocopherol polyethylene glycol succinate (TPGS), and glycyrrhizin acid (GL), were fabricated by wet media milling technique. The particle size, morphology, physical state, drug solubility, drug dissolution in vitro, and orally pharmacokinetic behaviors of all QT-NCs were investigated. All QT-NCs with similar particle size about 200 nm were obtained by controlling milling speed and milling time. No significant differences in particles shape and crystalline nature were found for QT-NCs stabilized by different functional stabilizers. But the solubility and dissolution of QT-NCs were significantly influenced by the different functional stabilizers. The AUC0∼t of all QT-NCs after oral administration was in the following order: QT-NCs/P188 ≈ QT-NCs/HPMC E15 > QT-NCs/GL > QT-NCs/P407 ≈ QT-NCs/TPGS, and the Cmax showed an order of QT-NCs/P407 > QT-NCs/P188 ≈ QT-NCs/GL > QT-NCs/HPMC E15 > QT-NCs/TPGS. Both of QT-NCs/P407 and QT-NCs/TPGS exhibited faster oral absorption with Tmax at 0.5 h and 0.83 h, respectively, while the other three QT-NCs (QT-NCs/P188, QT-NCs/GL and QT-NCs/HPMC E15) showed a relatively slow absorption with same Tmax at 5.33 h. The longest MRT0∼t (11.72 h) and t1/2z (32.22 h) were observed for QT-NCs/HPMC E15. These results suggested that the different functional stabilizers could significantly influence on drug solubility, drug dissolution in vitro and orally pharmacokinetic behavior of QT-NCs, and it is possible to alter the drug dissolution in vitro, oral absorption and drug retention in vivo by changing the type of functional stabilizers in NCs preparation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.90
自引率
2.90%
发文量
82
审稿时长
1 months
期刊介绍: Pharmaceutical Development & Technology publishes research on the design, development, manufacture, and evaluation of conventional and novel drug delivery systems, emphasizing practical solutions and applications to theoretical and research-based problems. The journal aims to publish significant, innovative and original research to advance the frontiers of pharmaceutical development and technology. Through original articles, reviews (where prior discussion with the EIC is encouraged), short reports, book reviews and technical notes, Pharmaceutical Development & Technology covers aspects such as: -Preformulation and pharmaceutical formulation studies -Pharmaceutical materials selection and characterization -Pharmaceutical process development, engineering, scale-up and industrialisation, and process validation -QbD in the form a risk assessment and DoE driven approaches -Design of dosage forms and drug delivery systems -Emerging pharmaceutical formulation and drug delivery technologies with a focus on personalised therapies -Drug delivery systems research and quality improvement -Pharmaceutical regulatory affairs This journal will not consider for publication manuscripts focusing purely on clinical evaluations, botanicals, or animal models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信