Aline Renata Pavan , Barbara Terroni , Jean Leandro Dos Santos
{"title":"镰状细胞病的内皮功能障碍:治疗策略。","authors":"Aline Renata Pavan , Barbara Terroni , Jean Leandro Dos Santos","doi":"10.1016/j.niox.2024.05.003","DOIUrl":null,"url":null,"abstract":"<div><p>Sickle Cell Anemia (SCA), is an inherited hemoglobinopathy characterized by the presence of an abnormal hemoglobin (HbS), being the most prevalent sickle cell disease (SCD). SCA is characterized by vascular endothelial dysfunction, which contributes significantly to various clinical conditions, including but not limited to pulmonary hypertension, priapism, cutaneous leg ulceration, and stroke. The pathophysiology of endothelial dysfunction (ED) in SCA is a multifaceted process involving a chronic inflammatory and hypercoagulable state. Key factors include hemolysis-associated elements like reduced arginine and nitric oxide (NO) availability, elevated levels of vascular adhesion molecules, the uncoupling effect of NO synthase, heightened arginase activity, an environment characterized by oxidative stress with the production of reactive oxygen and nitrogen species, and occurrences of ischemia-reperfusion injury, along with apolipoprotein A-1 depletion. The urgency for novel interventions addressing ED is evident. Presently, there is a focus on investigating small molecules that disrupt the arginine-nitric oxide pathway, exhibiting anti-inflammatory and antioxidant properties while diminishing levels of cellular and vascular adhesion molecules. In this mini-review article, we delve into the progress made in strategies for treating ED in SCD with the aim of cultivating insights for drug design.</p></div>","PeriodicalId":19357,"journal":{"name":"Nitric oxide : biology and chemistry","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Endothelial dysfunction in Sickle Cell Disease: Strategies for the treatment\",\"authors\":\"Aline Renata Pavan , Barbara Terroni , Jean Leandro Dos Santos\",\"doi\":\"10.1016/j.niox.2024.05.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Sickle Cell Anemia (SCA), is an inherited hemoglobinopathy characterized by the presence of an abnormal hemoglobin (HbS), being the most prevalent sickle cell disease (SCD). SCA is characterized by vascular endothelial dysfunction, which contributes significantly to various clinical conditions, including but not limited to pulmonary hypertension, priapism, cutaneous leg ulceration, and stroke. The pathophysiology of endothelial dysfunction (ED) in SCA is a multifaceted process involving a chronic inflammatory and hypercoagulable state. Key factors include hemolysis-associated elements like reduced arginine and nitric oxide (NO) availability, elevated levels of vascular adhesion molecules, the uncoupling effect of NO synthase, heightened arginase activity, an environment characterized by oxidative stress with the production of reactive oxygen and nitrogen species, and occurrences of ischemia-reperfusion injury, along with apolipoprotein A-1 depletion. The urgency for novel interventions addressing ED is evident. Presently, there is a focus on investigating small molecules that disrupt the arginine-nitric oxide pathway, exhibiting anti-inflammatory and antioxidant properties while diminishing levels of cellular and vascular adhesion molecules. In this mini-review article, we delve into the progress made in strategies for treating ED in SCD with the aim of cultivating insights for drug design.</p></div>\",\"PeriodicalId\":19357,\"journal\":{\"name\":\"Nitric oxide : biology and chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nitric oxide : biology and chemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1089860324000740\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nitric oxide : biology and chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1089860324000740","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
镰状细胞性贫血(SCA)是一种以血红蛋白(HbS)异常为特征的遗传性血红蛋白病,是最常见的镰状细胞病(SCD)。镰状细胞病的特点是血管内皮功能障碍,这在很大程度上导致了各种临床症状,包括但不限于肺动脉高压、早搏、腿部皮肤溃疡和中风。SCA 内皮功能障碍(ED)的病理生理学是一个涉及慢性炎症和高凝状态的多方面过程。关键因素包括溶血相关因素,如精氨酸和一氧化氮(NO)可用性降低、血管粘附分子水平升高、NO 合酶的解偶联效应、精氨酸酶活性增强、以氧化应激为特征的环境(产生活性氧和氮物种)、缺血再灌注损伤的发生以及载脂蛋白 A-1 的耗竭。针对 ED 的新型干预措施的紧迫性显而易见。目前,研究的重点是破坏精氨酸-一氧化氮通路的小分子,它们具有抗炎和抗氧化特性,同时能降低细胞和血管粘附分子的水平。在这篇微型综述文章中,我们深入探讨了治疗 SCD ED 的策略所取得的进展,旨在为药物设计提供启示。
Endothelial dysfunction in Sickle Cell Disease: Strategies for the treatment
Sickle Cell Anemia (SCA), is an inherited hemoglobinopathy characterized by the presence of an abnormal hemoglobin (HbS), being the most prevalent sickle cell disease (SCD). SCA is characterized by vascular endothelial dysfunction, which contributes significantly to various clinical conditions, including but not limited to pulmonary hypertension, priapism, cutaneous leg ulceration, and stroke. The pathophysiology of endothelial dysfunction (ED) in SCA is a multifaceted process involving a chronic inflammatory and hypercoagulable state. Key factors include hemolysis-associated elements like reduced arginine and nitric oxide (NO) availability, elevated levels of vascular adhesion molecules, the uncoupling effect of NO synthase, heightened arginase activity, an environment characterized by oxidative stress with the production of reactive oxygen and nitrogen species, and occurrences of ischemia-reperfusion injury, along with apolipoprotein A-1 depletion. The urgency for novel interventions addressing ED is evident. Presently, there is a focus on investigating small molecules that disrupt the arginine-nitric oxide pathway, exhibiting anti-inflammatory and antioxidant properties while diminishing levels of cellular and vascular adhesion molecules. In this mini-review article, we delve into the progress made in strategies for treating ED in SCD with the aim of cultivating insights for drug design.
期刊介绍:
Nitric Oxide includes original research, methodology papers and reviews relating to nitric oxide and other gasotransmitters such as hydrogen sulfide and carbon monoxide. Special emphasis is placed on the biological chemistry, physiology, pharmacology, enzymology and pathological significance of these molecules in human health and disease. The journal also accepts manuscripts relating to plant and microbial studies involving these molecules.