p53 通过调节增强子的形成和活性发挥抗癌作用。

IF 2.2 4区 医学 Q3 MEDICINE, RESEARCH & EXPERIMENTAL
Shuhan Chen, Xuchun Wang, Nan Yang, Yuechi Song, He Cheng, Yujie Sun
{"title":"p53 通过调节增强子的形成和活性发挥抗癌作用。","authors":"Shuhan Chen, Xuchun Wang, Nan Yang, Yuechi Song, He Cheng, Yujie Sun","doi":"10.7555/JBR.37.20230206","DOIUrl":null,"url":null,"abstract":"<p><p>The abnormality of the p53 tumor suppressor is crucial in lung cancer development, because p53 regulates target gene promoters to combat cancer. Recent studies have shown extensive p53 binding to enhancer elements. However, whether p53 exerts a tumor suppressor role by shaping the enhancer landscape remains poorly understood. In the current study, we employed several functional genomics approaches to assess the enhancer activity at p53 binding sites throughout the genome based on our established <i>TP53</i> knockout (KO) human bronchial epithelial cells (BEAS-2B). A total of 943 active regular enhancers and 370 super-enhancers (SEs) disappeared upon the deletion of p53, indicating that p53 modulates the activity of hundreds of enhancer elements. We found that one p53-dependent SE, located on chromosome 9 and designated as <i>KLF4</i>-SE, regulated the expression of the Krüppel-like factor 4 ( <i>KLF4</i>) gene. Furthermore, the deletion of p53 significantly decreased the <i>KLF4</i>-SE enhancer activity and the <i>KLF4</i> expression, but increased colony formation ability in the nitrosamines 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced cell transformation model. Subsequently, in <i>TP53</i> KO cells, the overexpression of KLF4 partially reversed the increased clonogenic capacity caused by p53 deficiency. Consistently, <i>KLF4</i> expression also decreased in lung cancer tissues and cell lines. It appeared that overexpression of KLF4 significantly suppressed the proliferation and migration of lung cancer cells. Collectively, our results suggest that the regulation of enhancer formation and activity by p53 is an integral component of the p53 tumor suppressor function. Therefore, our findings offer some novel insights into the regulation mechanism of p53 in lung oncogenesis and introduce a new strategy for screening therapeutic targets.</p>","PeriodicalId":15061,"journal":{"name":"Journal of Biomedical Research","volume":" ","pages":"334-347"},"PeriodicalIF":2.2000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11300520/pdf/","citationCount":"0","resultStr":"{\"title\":\"p53 exerts anticancer effects by regulating enhancer formation and activity.\",\"authors\":\"Shuhan Chen, Xuchun Wang, Nan Yang, Yuechi Song, He Cheng, Yujie Sun\",\"doi\":\"10.7555/JBR.37.20230206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The abnormality of the p53 tumor suppressor is crucial in lung cancer development, because p53 regulates target gene promoters to combat cancer. Recent studies have shown extensive p53 binding to enhancer elements. However, whether p53 exerts a tumor suppressor role by shaping the enhancer landscape remains poorly understood. In the current study, we employed several functional genomics approaches to assess the enhancer activity at p53 binding sites throughout the genome based on our established <i>TP53</i> knockout (KO) human bronchial epithelial cells (BEAS-2B). A total of 943 active regular enhancers and 370 super-enhancers (SEs) disappeared upon the deletion of p53, indicating that p53 modulates the activity of hundreds of enhancer elements. We found that one p53-dependent SE, located on chromosome 9 and designated as <i>KLF4</i>-SE, regulated the expression of the Krüppel-like factor 4 ( <i>KLF4</i>) gene. Furthermore, the deletion of p53 significantly decreased the <i>KLF4</i>-SE enhancer activity and the <i>KLF4</i> expression, but increased colony formation ability in the nitrosamines 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced cell transformation model. Subsequently, in <i>TP53</i> KO cells, the overexpression of KLF4 partially reversed the increased clonogenic capacity caused by p53 deficiency. Consistently, <i>KLF4</i> expression also decreased in lung cancer tissues and cell lines. It appeared that overexpression of KLF4 significantly suppressed the proliferation and migration of lung cancer cells. Collectively, our results suggest that the regulation of enhancer formation and activity by p53 is an integral component of the p53 tumor suppressor function. Therefore, our findings offer some novel insights into the regulation mechanism of p53 in lung oncogenesis and introduce a new strategy for screening therapeutic targets.</p>\",\"PeriodicalId\":15061,\"journal\":{\"name\":\"Journal of Biomedical Research\",\"volume\":\" \",\"pages\":\"334-347\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11300520/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomedical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.7555/JBR.37.20230206\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.7555/JBR.37.20230206","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

p53 肿瘤抑制因子的异常是肺癌发生的关键,而 p53 可调控靶基因启动子以对抗癌症。最近的研究表明,p53 与增强子元件有广泛的结合。然而,人们对 p53 是否通过塑造增强子图谱来发挥抑癌作用仍知之甚少。在本研究中,我们基于已建立的 TP53 基因敲除人支气管上皮细胞(BEAS-2B),采用多种功能基因组学方法评估了整个基因组中 p53 结合位点的增强子活性。删除 p53 后,共有 943 个活跃的常规增强子和 370 个超级增强子(SE)消失,这表明 p53 可调节数百个增强子元件的活性。我们发现,一个依赖于 p53 的 SE 位于第 9 号染色体上,被命名为 KLF4-SE,它调控着 Krüppel-like factor 4 ( KLF4) 基因的表达。此外,在亚硝胺-4-(甲基亚硝基氨基)-1-(3-吡啶基)-1-丁酮诱导的细胞转化模型中,缺失 p53 会显著降低 KLF4-SE 增强子活性和 KLF4 表达,但会提高集落形成能力。随后,在 TP53 基因敲除的细胞中,KLF4 的过表达部分逆转了 p53 缺失导致的集落形成能力的增强。同样,KLF4 在肺癌组织和细胞系中的表达也有所下降。过表达 KLF4 能显著抑制肺癌细胞的增殖和迁移。总之,我们的研究结果表明,p53 对增强子形成和活性的调控是 p53 抑瘤功能不可或缺的组成部分。因此,我们的研究结果为了解 p53 在肺癌发生过程中的调控机制提供了新的视角,并为筛选治疗靶点提供了新的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
p53 exerts anticancer effects by regulating enhancer formation and activity.

The abnormality of the p53 tumor suppressor is crucial in lung cancer development, because p53 regulates target gene promoters to combat cancer. Recent studies have shown extensive p53 binding to enhancer elements. However, whether p53 exerts a tumor suppressor role by shaping the enhancer landscape remains poorly understood. In the current study, we employed several functional genomics approaches to assess the enhancer activity at p53 binding sites throughout the genome based on our established TP53 knockout (KO) human bronchial epithelial cells (BEAS-2B). A total of 943 active regular enhancers and 370 super-enhancers (SEs) disappeared upon the deletion of p53, indicating that p53 modulates the activity of hundreds of enhancer elements. We found that one p53-dependent SE, located on chromosome 9 and designated as KLF4-SE, regulated the expression of the Krüppel-like factor 4 ( KLF4) gene. Furthermore, the deletion of p53 significantly decreased the KLF4-SE enhancer activity and the KLF4 expression, but increased colony formation ability in the nitrosamines 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced cell transformation model. Subsequently, in TP53 KO cells, the overexpression of KLF4 partially reversed the increased clonogenic capacity caused by p53 deficiency. Consistently, KLF4 expression also decreased in lung cancer tissues and cell lines. It appeared that overexpression of KLF4 significantly suppressed the proliferation and migration of lung cancer cells. Collectively, our results suggest that the regulation of enhancer formation and activity by p53 is an integral component of the p53 tumor suppressor function. Therefore, our findings offer some novel insights into the regulation mechanism of p53 in lung oncogenesis and introduce a new strategy for screening therapeutic targets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biomedical Research
Journal of Biomedical Research MEDICINE, RESEARCH & EXPERIMENTAL-
CiteScore
4.60
自引率
0.00%
发文量
69
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信