Xuejun Xu, Kaineng Sun, Hao Chang, Chunxiang Shen, Xiangdong Li, Yangyue Ni, Yuxiao Zhu, Huiquan Wang, Ruiyan Xiong, Jon Rob Padde, Zhipeng Xu, Lin Chen, Lu Chen, Min Hou, Liyong Pu, Minjun Ji
{"title":"新型抗炎肽可减轻肝脏缺血再灌注损伤","authors":"Xuejun Xu, Kaineng Sun, Hao Chang, Chunxiang Shen, Xiangdong Li, Yangyue Ni, Yuxiao Zhu, Huiquan Wang, Ruiyan Xiong, Jon Rob Padde, Zhipeng Xu, Lin Chen, Lu Chen, Min Hou, Liyong Pu, Minjun Ji","doi":"10.7555/JBR.38.20240020","DOIUrl":null,"url":null,"abstract":"<p><p>Ischemia-reperfusion injury (IRI) remains inevitable in liver surgeries, macrophages play a critical role in the development of IRI, but little is known about the macrophages regulate pathogenesis of IRI. Based on target-guided screening, we identified a small 3 kDa peptide (SjDX5-271) from various schistosome egg-derived peptides that induced M2 macrophage polarization. SjDX5-271 treatment protected the mice against liver IRI through promoting M2 macrophage polarization, the protective effect was abrogated when the macrophages were depleted. Transcriptomic sequencing showed that the TLR signaling pathway was significantly inhibited in macrophages derived from the SjDX5-271 treatment group. We further identified that SjDX5-271 promotes M2 macrophage polarization by inhibiting the TLR4/MyD88/NF-κB signaling pathway and further alleviates hepatic inflammation in liver IRI. Collectively, SjDX5-271 exhibits promising therapeutic effects in IRI and represents a novel therapeutic approach for IRI, even in immune-related diseases. This study revealed the development of a new biologic from the parasite and enhanced our understanding of host-parasite interplay, providing a blueprint for future therapies for immune-related diseases.</p>","PeriodicalId":15061,"journal":{"name":"Journal of Biomedical Research","volume":" ","pages":"1-15"},"PeriodicalIF":2.2000,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel anti-inflammatory peptide alleviates liver ischemia-reperfusion injury.\",\"authors\":\"Xuejun Xu, Kaineng Sun, Hao Chang, Chunxiang Shen, Xiangdong Li, Yangyue Ni, Yuxiao Zhu, Huiquan Wang, Ruiyan Xiong, Jon Rob Padde, Zhipeng Xu, Lin Chen, Lu Chen, Min Hou, Liyong Pu, Minjun Ji\",\"doi\":\"10.7555/JBR.38.20240020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ischemia-reperfusion injury (IRI) remains inevitable in liver surgeries, macrophages play a critical role in the development of IRI, but little is known about the macrophages regulate pathogenesis of IRI. Based on target-guided screening, we identified a small 3 kDa peptide (SjDX5-271) from various schistosome egg-derived peptides that induced M2 macrophage polarization. SjDX5-271 treatment protected the mice against liver IRI through promoting M2 macrophage polarization, the protective effect was abrogated when the macrophages were depleted. Transcriptomic sequencing showed that the TLR signaling pathway was significantly inhibited in macrophages derived from the SjDX5-271 treatment group. We further identified that SjDX5-271 promotes M2 macrophage polarization by inhibiting the TLR4/MyD88/NF-κB signaling pathway and further alleviates hepatic inflammation in liver IRI. Collectively, SjDX5-271 exhibits promising therapeutic effects in IRI and represents a novel therapeutic approach for IRI, even in immune-related diseases. This study revealed the development of a new biologic from the parasite and enhanced our understanding of host-parasite interplay, providing a blueprint for future therapies for immune-related diseases.</p>\",\"PeriodicalId\":15061,\"journal\":{\"name\":\"Journal of Biomedical Research\",\"volume\":\" \",\"pages\":\"1-15\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomedical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.7555/JBR.38.20240020\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.7555/JBR.38.20240020","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
摘要
缺血再灌注损伤(IRI)在肝脏手术中仍不可避免,巨噬细胞在IRI的发生发展中起着关键作用,但人们对巨噬细胞调控IRI的发病机制知之甚少。基于靶标引导筛选,我们从多种血吸虫卵衍生肽中发现了一种3 kDa的小肽(SjDX5-271),它能诱导M2巨噬细胞极化。通过促进M2巨噬细胞极化,SjDX5-271能保护小鼠免受肝脏IRI的侵袭。转录组测序显示,SjDX5-271治疗组的巨噬细胞中TLR信号通路受到显著抑制。我们进一步发现,SjDX5-271 通过抑制 TLR4/MyD88/NF-κB 信号通路促进了 M2 巨噬细胞的极化,并进一步缓解了肝脏 IRI 中的肝脏炎症。总之,SjDX5-271 对 IRI 具有良好的治疗效果,是治疗 IRI 甚至免疫相关疾病的一种新方法。这项研究揭示了一种新的寄生虫生物制剂的开发,加深了我们对宿主-寄生虫相互作用的理解,为未来治疗免疫相关疾病提供了蓝图。
Ischemia-reperfusion injury (IRI) remains inevitable in liver surgeries, macrophages play a critical role in the development of IRI, but little is known about the macrophages regulate pathogenesis of IRI. Based on target-guided screening, we identified a small 3 kDa peptide (SjDX5-271) from various schistosome egg-derived peptides that induced M2 macrophage polarization. SjDX5-271 treatment protected the mice against liver IRI through promoting M2 macrophage polarization, the protective effect was abrogated when the macrophages were depleted. Transcriptomic sequencing showed that the TLR signaling pathway was significantly inhibited in macrophages derived from the SjDX5-271 treatment group. We further identified that SjDX5-271 promotes M2 macrophage polarization by inhibiting the TLR4/MyD88/NF-κB signaling pathway and further alleviates hepatic inflammation in liver IRI. Collectively, SjDX5-271 exhibits promising therapeutic effects in IRI and represents a novel therapeutic approach for IRI, even in immune-related diseases. This study revealed the development of a new biologic from the parasite and enhanced our understanding of host-parasite interplay, providing a blueprint for future therapies for immune-related diseases.