Yuqian Yan, Lu Zhang, Xin Xu, Jing Lu, Xinyuan Ge, Maojie Liu, Juan Yang, Chan Tian, Zijun Ge, Chengxiao Yu, Wen Guo, Chunyan Ye, Qun Zhang
{"title":"美国成年人接触全氟和多氟烷基物质与肝损伤之间的关系。","authors":"Yuqian Yan, Lu Zhang, Xin Xu, Jing Lu, Xinyuan Ge, Maojie Liu, Juan Yang, Chan Tian, Zijun Ge, Chengxiao Yu, Wen Guo, Chunyan Ye, Qun Zhang","doi":"10.7555/JBR.38.20240018","DOIUrl":null,"url":null,"abstract":"<p><p>Epidemiological data is scarce regarding the association between exposure to mixtures of per- and polyfluoroalkyl substances (PFASs) and liver injury in the general populace. The current research used data from the National Health and Nutrition Examination Survey (2009-2018). The PFAS exposure levels were defined by the serum concentrations of PFASs with > 70% detection in samples, namely perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorohexane sulfonic acid (PFHxS), perfluorodecanoic acid (PFDeA), and perfluorooctane sulfonic acid (PFOS). Liver injury was assessed from two aspects: first, the degree of liver inflammation was determined based on serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), glutamyltransferase (GGT), and total bilirubin (TBIL) levels; second, the degree of liver fibrosis was determined based on fibrosis-4 (FIB-4) index. We assessed the associations between individual or total PFAS exposure and these outcomes using multivariable linear regression models and logistic regression models, restricted cubic splines, and weighted quantile sum regression. Among the samples of 7484 American adults, the median concentration of PFOS was the highest, followed by PFOA and PFHxS. Using multivariable linear regression, a positive correlation was observed between all PFASs and liver enzymes such as ALT, AST, and TBIL. Additionally, the weighted quantile sum model indicated an overall positive association between the five PFASs and liver injury indicators. For liver function biomarkers and liver fibrosis, PFNA and PFOS were the most heavily weighting chemicals, respectively. Our findings provide new epidemiological evidence indicating a potential association between PFAS exposure and adverse effects on liver injury biomarkers, highlighting the potentially harmful effects of PFAS exposure on liver health.</p>","PeriodicalId":15061,"journal":{"name":"Journal of Biomedical Research","volume":" ","pages":"1-12"},"PeriodicalIF":2.2000,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11629162/pdf/","citationCount":"0","resultStr":"{\"title\":\"Association between exposure to per- and polyfluoroalkyl substance and liver injury in American adults.\",\"authors\":\"Yuqian Yan, Lu Zhang, Xin Xu, Jing Lu, Xinyuan Ge, Maojie Liu, Juan Yang, Chan Tian, Zijun Ge, Chengxiao Yu, Wen Guo, Chunyan Ye, Qun Zhang\",\"doi\":\"10.7555/JBR.38.20240018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Epidemiological data is scarce regarding the association between exposure to mixtures of per- and polyfluoroalkyl substances (PFASs) and liver injury in the general populace. The current research used data from the National Health and Nutrition Examination Survey (2009-2018). The PFAS exposure levels were defined by the serum concentrations of PFASs with > 70% detection in samples, namely perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorohexane sulfonic acid (PFHxS), perfluorodecanoic acid (PFDeA), and perfluorooctane sulfonic acid (PFOS). Liver injury was assessed from two aspects: first, the degree of liver inflammation was determined based on serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), glutamyltransferase (GGT), and total bilirubin (TBIL) levels; second, the degree of liver fibrosis was determined based on fibrosis-4 (FIB-4) index. We assessed the associations between individual or total PFAS exposure and these outcomes using multivariable linear regression models and logistic regression models, restricted cubic splines, and weighted quantile sum regression. Among the samples of 7484 American adults, the median concentration of PFOS was the highest, followed by PFOA and PFHxS. Using multivariable linear regression, a positive correlation was observed between all PFASs and liver enzymes such as ALT, AST, and TBIL. Additionally, the weighted quantile sum model indicated an overall positive association between the five PFASs and liver injury indicators. For liver function biomarkers and liver fibrosis, PFNA and PFOS were the most heavily weighting chemicals, respectively. Our findings provide new epidemiological evidence indicating a potential association between PFAS exposure and adverse effects on liver injury biomarkers, highlighting the potentially harmful effects of PFAS exposure on liver health.</p>\",\"PeriodicalId\":15061,\"journal\":{\"name\":\"Journal of Biomedical Research\",\"volume\":\" \",\"pages\":\"1-12\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11629162/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomedical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.7555/JBR.38.20240018\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.7555/JBR.38.20240018","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Association between exposure to per- and polyfluoroalkyl substance and liver injury in American adults.
Epidemiological data is scarce regarding the association between exposure to mixtures of per- and polyfluoroalkyl substances (PFASs) and liver injury in the general populace. The current research used data from the National Health and Nutrition Examination Survey (2009-2018). The PFAS exposure levels were defined by the serum concentrations of PFASs with > 70% detection in samples, namely perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorohexane sulfonic acid (PFHxS), perfluorodecanoic acid (PFDeA), and perfluorooctane sulfonic acid (PFOS). Liver injury was assessed from two aspects: first, the degree of liver inflammation was determined based on serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), glutamyltransferase (GGT), and total bilirubin (TBIL) levels; second, the degree of liver fibrosis was determined based on fibrosis-4 (FIB-4) index. We assessed the associations between individual or total PFAS exposure and these outcomes using multivariable linear regression models and logistic regression models, restricted cubic splines, and weighted quantile sum regression. Among the samples of 7484 American adults, the median concentration of PFOS was the highest, followed by PFOA and PFHxS. Using multivariable linear regression, a positive correlation was observed between all PFASs and liver enzymes such as ALT, AST, and TBIL. Additionally, the weighted quantile sum model indicated an overall positive association between the five PFASs and liver injury indicators. For liver function biomarkers and liver fibrosis, PFNA and PFOS were the most heavily weighting chemicals, respectively. Our findings provide new epidemiological evidence indicating a potential association between PFAS exposure and adverse effects on liver injury biomarkers, highlighting the potentially harmful effects of PFAS exposure on liver health.