环肽moroidin通过调节β-catenin激活和EMT通路抑制胶质母细胞瘤细胞形成的血管生成模拟。

IF 2.2 4区 医学 Q3 MEDICINE, RESEARCH & EXPERIMENTAL
Pengxiang Min, Yingying Li, Cuirong Wang, Junting Fan, Shangming Liu, Xiang Chen, Yamin Tang, Feng Han, Aixia Zhang, Lili Feng
{"title":"环肽moroidin通过调节β-catenin激活和EMT通路抑制胶质母细胞瘤细胞形成的血管生成模拟。","authors":"Pengxiang Min, Yingying Li, Cuirong Wang, Junting Fan, Shangming Liu, Xiang Chen, Yamin Tang, Feng Han, Aixia Zhang, Lili Feng","doi":"10.7555/JBR.38.20240015","DOIUrl":null,"url":null,"abstract":"<p><p>Glioblastoma (GBM) is a highly vascularized malignant brain tumor with poor clinical outcomes. Vasculogenic mimicry (VM) formed by aggressive GBM cells is an alternative approach for tumor blood supply and contributes to the failure of anti-angiogenic therapy. To date, there is still a lack of effective drugs that target VM formation in GBM. In the present study, we evaluated the effects of the plant cyclopeptide moroidin on VM formed by GBM cells and investigated its underlying molecular mechanisms. Moroidin significantly suppressed cell migration, tube formation, and the expression levels of α-smooth muscle actin and matrix metalloproteinase-9 in human GBM cell lines at sublethal concentrations. The RNA sequencing data suggested the involvement of the epithelial-mesenchymal transition (EMT) pathway in the mechanism of moroidin. Exposure to moroidin led to a concentration-dependent decrease in the expression levels of the EMT markers N-cadherin and vimentin in GBM cells. Moreover, moroidin significantly reduced the level of phosphorylated extracellular signal-regulated protein kinase (p-ERK) and inhibited the activation of β-catenin. Finally, we demonstrated that the plant cyclopeptide moroidin inhibited VM formation by GBM cells through inhibiting the ERK/β-catenin-mediated EMT. Therefore, our study indicates a potential application of moroidin as an anti-VM agent in the treatment of GBM.</p>","PeriodicalId":15061,"journal":{"name":"Journal of Biomedical Research","volume":" ","pages":"322-333"},"PeriodicalIF":2.2000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11300521/pdf/","citationCount":"0","resultStr":"{\"title\":\"Cyclopeptide moroidin inhibits vasculogenic mimicry formed by glioblastoma cells <i>via</i> regulating β-catenin activation and EMT pathways.\",\"authors\":\"Pengxiang Min, Yingying Li, Cuirong Wang, Junting Fan, Shangming Liu, Xiang Chen, Yamin Tang, Feng Han, Aixia Zhang, Lili Feng\",\"doi\":\"10.7555/JBR.38.20240015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Glioblastoma (GBM) is a highly vascularized malignant brain tumor with poor clinical outcomes. Vasculogenic mimicry (VM) formed by aggressive GBM cells is an alternative approach for tumor blood supply and contributes to the failure of anti-angiogenic therapy. To date, there is still a lack of effective drugs that target VM formation in GBM. In the present study, we evaluated the effects of the plant cyclopeptide moroidin on VM formed by GBM cells and investigated its underlying molecular mechanisms. Moroidin significantly suppressed cell migration, tube formation, and the expression levels of α-smooth muscle actin and matrix metalloproteinase-9 in human GBM cell lines at sublethal concentrations. The RNA sequencing data suggested the involvement of the epithelial-mesenchymal transition (EMT) pathway in the mechanism of moroidin. Exposure to moroidin led to a concentration-dependent decrease in the expression levels of the EMT markers N-cadherin and vimentin in GBM cells. Moreover, moroidin significantly reduced the level of phosphorylated extracellular signal-regulated protein kinase (p-ERK) and inhibited the activation of β-catenin. Finally, we demonstrated that the plant cyclopeptide moroidin inhibited VM formation by GBM cells through inhibiting the ERK/β-catenin-mediated EMT. Therefore, our study indicates a potential application of moroidin as an anti-VM agent in the treatment of GBM.</p>\",\"PeriodicalId\":15061,\"journal\":{\"name\":\"Journal of Biomedical Research\",\"volume\":\" \",\"pages\":\"322-333\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11300521/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomedical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.7555/JBR.38.20240015\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.7555/JBR.38.20240015","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

胶质母细胞瘤(GBM)是一种高度血管化的恶性脑肿瘤,临床疗效不佳。侵袭性 GBM 细胞形成的血管生成模拟(VM)是肿瘤供血的另一种途径,也是抗血管生成治疗(AAT)失败的原因之一。然而,目前仍缺乏针对 GBM VM 形成的有效药物。在本研究中,我们评估了植物环肽 Moroidin 对 GBM 细胞形成的 VM 的影响,并探讨了其潜在的分子机制。在亚致死浓度下,吗啉能明显抑制人GBM细胞株的迁移、管形成以及α-SMA和金属蛋白酶-9的表达。RNA 测序数据表明,EMT 通路参与了吗啉的作用机制。将 GBM 细胞暴露于吗啉中,EMT 标志物 N-Cadherin 和 Vimentin 的表达呈浓度依赖性下降。此外,吗啉还能明显降低磷酸化ERK的水平,抑制β-catenin的活化。植物环肽moroidin通过抑制ERK/β-catenin介导的EMT,抑制了GBM细胞形成的VM。我们的研究表明,吗啉作为一种抗血管瘤药物,在治疗GBM方面具有广阔的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cyclopeptide moroidin inhibits vasculogenic mimicry formed by glioblastoma cells via regulating β-catenin activation and EMT pathways.

Glioblastoma (GBM) is a highly vascularized malignant brain tumor with poor clinical outcomes. Vasculogenic mimicry (VM) formed by aggressive GBM cells is an alternative approach for tumor blood supply and contributes to the failure of anti-angiogenic therapy. To date, there is still a lack of effective drugs that target VM formation in GBM. In the present study, we evaluated the effects of the plant cyclopeptide moroidin on VM formed by GBM cells and investigated its underlying molecular mechanisms. Moroidin significantly suppressed cell migration, tube formation, and the expression levels of α-smooth muscle actin and matrix metalloproteinase-9 in human GBM cell lines at sublethal concentrations. The RNA sequencing data suggested the involvement of the epithelial-mesenchymal transition (EMT) pathway in the mechanism of moroidin. Exposure to moroidin led to a concentration-dependent decrease in the expression levels of the EMT markers N-cadherin and vimentin in GBM cells. Moreover, moroidin significantly reduced the level of phosphorylated extracellular signal-regulated protein kinase (p-ERK) and inhibited the activation of β-catenin. Finally, we demonstrated that the plant cyclopeptide moroidin inhibited VM formation by GBM cells through inhibiting the ERK/β-catenin-mediated EMT. Therefore, our study indicates a potential application of moroidin as an anti-VM agent in the treatment of GBM.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biomedical Research
Journal of Biomedical Research MEDICINE, RESEARCH & EXPERIMENTAL-
CiteScore
4.60
自引率
0.00%
发文量
69
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信