Elisa S Buchberger, Chi T Ngo, Aaron Peikert, Andreas M Brandmaier, Markus Werkle-Bergner
{"title":"估算发展认知科学中结构方程模型的统计幂:R 语言教程:SEM 的幂模拟。","authors":"Elisa S Buchberger, Chi T Ngo, Aaron Peikert, Andreas M Brandmaier, Markus Werkle-Bergner","doi":"10.3758/s13428-024-02396-2","DOIUrl":null,"url":null,"abstract":"<p><p>Determining the compositional structure and dimensionality of psychological constructs lies at the heart of many research questions in developmental science. Structural equation modeling (SEM) provides a versatile framework for formalizing and estimating the relationships among multiple latent constructs. While the flexibility of SEM can accommodate many complex assumptions on the underlying structure of psychological constructs, it makes a priori estimation of statistical power and required sample size challenging. This difficulty is magnified when comparing non-nested SEMs, which prevents the use of traditional likelihood-ratio tests. Sample size estimates for SEM model fit comparisons typically rely on generic rules of thumb. Such heuristics can be misleading because statistical power in SEM depends on a variety of model properties. Here, we demonstrate a Monte Carlo simulation approach for estimating a priori statistical power for model selection when comparing non-nested models in an SEM framework. We provide a step-by-step guide to this approach based on an example from our memory development research in children.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11362481/pdf/","citationCount":"0","resultStr":"{\"title\":\"Estimating statistical power for structural equation models in developmental cognitive science: A tutorial in R : Power simulation for SEMs.\",\"authors\":\"Elisa S Buchberger, Chi T Ngo, Aaron Peikert, Andreas M Brandmaier, Markus Werkle-Bergner\",\"doi\":\"10.3758/s13428-024-02396-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Determining the compositional structure and dimensionality of psychological constructs lies at the heart of many research questions in developmental science. Structural equation modeling (SEM) provides a versatile framework for formalizing and estimating the relationships among multiple latent constructs. While the flexibility of SEM can accommodate many complex assumptions on the underlying structure of psychological constructs, it makes a priori estimation of statistical power and required sample size challenging. This difficulty is magnified when comparing non-nested SEMs, which prevents the use of traditional likelihood-ratio tests. Sample size estimates for SEM model fit comparisons typically rely on generic rules of thumb. Such heuristics can be misleading because statistical power in SEM depends on a variety of model properties. Here, we demonstrate a Monte Carlo simulation approach for estimating a priori statistical power for model selection when comparing non-nested models in an SEM framework. We provide a step-by-step guide to this approach based on an example from our memory development research in children.</p>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11362481/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.3758/s13428-024-02396-2\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.3758/s13428-024-02396-2","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/28 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
确定心理建构的组成结构和维度是发展科学中许多研究问题的核心。结构方程建模(SEM)为正式确定和估计多个潜在建构之间的关系提供了一个通用框架。虽然结构方程模型的灵活性可以容纳许多关于心理建构基础结构的复杂假设,但它对统计能力和所需样本量的先验估计具有挑战性。在比较非嵌套的 SEM 时,这种困难就会被放大,从而无法使用传统的似然比检验。SEM 模型拟合比较的样本量估计通常依赖于通用的经验法则。这种启发式方法可能会产生误导,因为 SEM 的统计能力取决于各种模型属性。在此,我们展示了一种蒙特卡罗模拟方法,用于在 SEM 框架下比较非嵌套模型时,估计用于模型选择的先验统计能力。我们以儿童记忆力发展研究为例,逐步介绍了这种方法。
Estimating statistical power for structural equation models in developmental cognitive science: A tutorial in R : Power simulation for SEMs.
Determining the compositional structure and dimensionality of psychological constructs lies at the heart of many research questions in developmental science. Structural equation modeling (SEM) provides a versatile framework for formalizing and estimating the relationships among multiple latent constructs. While the flexibility of SEM can accommodate many complex assumptions on the underlying structure of psychological constructs, it makes a priori estimation of statistical power and required sample size challenging. This difficulty is magnified when comparing non-nested SEMs, which prevents the use of traditional likelihood-ratio tests. Sample size estimates for SEM model fit comparisons typically rely on generic rules of thumb. Such heuristics can be misleading because statistical power in SEM depends on a variety of model properties. Here, we demonstrate a Monte Carlo simulation approach for estimating a priori statistical power for model selection when comparing non-nested models in an SEM framework. We provide a step-by-step guide to this approach based on an example from our memory development research in children.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.