Emma Pritchard, Karina-Doris Vihta, David W Eyre, Susan Hopkins, Tim E A Peto, Philippa C Matthews, Nicole Stoesser, Ruth Studley, Emma Rourke, Ian Diamond, Koen B Pouwels, Ann Sarah Walker, Covid- Infection Survey Team
{"title":"以社区 SARS-CoV-2 流行率为范例,检测感染监测中人群趋势的变化。","authors":"Emma Pritchard, Karina-Doris Vihta, David W Eyre, Susan Hopkins, Tim E A Peto, Philippa C Matthews, Nicole Stoesser, Ruth Studley, Emma Rourke, Ian Diamond, Koen B Pouwels, Ann Sarah Walker, Covid- Infection Survey Team","doi":"10.1093/aje/kwae091","DOIUrl":null,"url":null,"abstract":"<p><p>Detecting and quantifying changes in the growth rates of infectious diseases is vital to informing public health strategy and can inform policymakers' rationale for implementing or continuing interventions aimed at reducing their impact. Substantial changes in SARS-CoV-2 prevalence with the emergence of variants have provided an opportunity to investigate different methods for doing this. We collected polymerase chain reaction (PCR) results from all participants in the United Kingdom's COVID-19 Infection Survey between August 1, 2020, and June 30, 2022. Change points for growth rates were identified using iterative sequential regression (ISR) and second derivatives of generalized additive models (GAMs). Consistency between methods and timeliness of detection were compared. Of 8 799 079 study visits, 147 278 (1.7%) were PCR-positive. Change points associated with the emergence of major variants were estimated to occur a median of 4 days earlier (IQR, 0-8) when using GAMs versus ISR. When estimating recent change points using successive data periods, 4 change points (4/96) identified by GAMs were not found when adding later data or by ISR. Change points were detected 3-5 weeks after they occurred under both methods but could be detected earlier within specific subgroups. Change points in growth rates of SARS-CoV-2 can be detected in near real time using ISR and second derivatives of GAMs. To increase certainty about changes in epidemic trajectories, both methods could be used in parallel.</p>","PeriodicalId":7472,"journal":{"name":"American journal of epidemiology","volume":" ","pages":"1848-1860"},"PeriodicalIF":5.0000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7616874/pdf/","citationCount":"0","resultStr":"{\"title\":\"Detecting changes in population trends in infection surveillance using community SARS-CoV-2 prevalence as an exemplar.\",\"authors\":\"Emma Pritchard, Karina-Doris Vihta, David W Eyre, Susan Hopkins, Tim E A Peto, Philippa C Matthews, Nicole Stoesser, Ruth Studley, Emma Rourke, Ian Diamond, Koen B Pouwels, Ann Sarah Walker, Covid- Infection Survey Team\",\"doi\":\"10.1093/aje/kwae091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Detecting and quantifying changes in the growth rates of infectious diseases is vital to informing public health strategy and can inform policymakers' rationale for implementing or continuing interventions aimed at reducing their impact. Substantial changes in SARS-CoV-2 prevalence with the emergence of variants have provided an opportunity to investigate different methods for doing this. We collected polymerase chain reaction (PCR) results from all participants in the United Kingdom's COVID-19 Infection Survey between August 1, 2020, and June 30, 2022. Change points for growth rates were identified using iterative sequential regression (ISR) and second derivatives of generalized additive models (GAMs). Consistency between methods and timeliness of detection were compared. Of 8 799 079 study visits, 147 278 (1.7%) were PCR-positive. Change points associated with the emergence of major variants were estimated to occur a median of 4 days earlier (IQR, 0-8) when using GAMs versus ISR. When estimating recent change points using successive data periods, 4 change points (4/96) identified by GAMs were not found when adding later data or by ISR. Change points were detected 3-5 weeks after they occurred under both methods but could be detected earlier within specific subgroups. Change points in growth rates of SARS-CoV-2 can be detected in near real time using ISR and second derivatives of GAMs. To increase certainty about changes in epidemic trajectories, both methods could be used in parallel.</p>\",\"PeriodicalId\":7472,\"journal\":{\"name\":\"American journal of epidemiology\",\"volume\":\" \",\"pages\":\"1848-1860\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7616874/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of epidemiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/aje/kwae091\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of epidemiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/aje/kwae091","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
Detecting changes in population trends in infection surveillance using community SARS-CoV-2 prevalence as an exemplar.
Detecting and quantifying changes in the growth rates of infectious diseases is vital to informing public health strategy and can inform policymakers' rationale for implementing or continuing interventions aimed at reducing their impact. Substantial changes in SARS-CoV-2 prevalence with the emergence of variants have provided an opportunity to investigate different methods for doing this. We collected polymerase chain reaction (PCR) results from all participants in the United Kingdom's COVID-19 Infection Survey between August 1, 2020, and June 30, 2022. Change points for growth rates were identified using iterative sequential regression (ISR) and second derivatives of generalized additive models (GAMs). Consistency between methods and timeliness of detection were compared. Of 8 799 079 study visits, 147 278 (1.7%) were PCR-positive. Change points associated with the emergence of major variants were estimated to occur a median of 4 days earlier (IQR, 0-8) when using GAMs versus ISR. When estimating recent change points using successive data periods, 4 change points (4/96) identified by GAMs were not found when adding later data or by ISR. Change points were detected 3-5 weeks after they occurred under both methods but could be detected earlier within specific subgroups. Change points in growth rates of SARS-CoV-2 can be detected in near real time using ISR and second derivatives of GAMs. To increase certainty about changes in epidemic trajectories, both methods could be used in parallel.
期刊介绍:
The American Journal of Epidemiology is the oldest and one of the premier epidemiologic journals devoted to the publication of empirical research findings, opinion pieces, and methodological developments in the field of epidemiologic research.
It is a peer-reviewed journal aimed at both fellow epidemiologists and those who use epidemiologic data, including public health workers and clinicians.