心肌长度依赖性活化受力依赖性粗丝动力学驱动。

IF 3.2 3区 生物学 Q2 BIOPHYSICS
Biophysical journal Pub Date : 2024-09-17 Epub Date: 2024-05-28 DOI:10.1016/j.bpj.2024.05.025
Alexandre Lewalle, Gregory Milburn, Kenneth S Campbell, Steven A Niederer
{"title":"心肌长度依赖性活化受力依赖性粗丝动力学驱动。","authors":"Alexandre Lewalle, Gregory Milburn, Kenneth S Campbell, Steven A Niederer","doi":"10.1016/j.bpj.2024.05.025","DOIUrl":null,"url":null,"abstract":"<p><p>The length-dependent activation (LDA) of maximum force and calcium sensitivity are established features of cardiac muscle contraction but the dominant underlying mechanisms remain to be fully clarified. Alongside the well-documented regulation of contraction via the thin filaments, experiments have identified an additional force-dependent thick-filament activation, whereby myosin heads parked in a so-called off state become available to generate force. This process produces a feedback effect that may potentially drive LDA. Using biomechanical modeling of a human left-ventricular myocyte, this study investigates the extent to which the off-state dynamics could, by itself, plausibly account for LDA, depending on the specific mathematical formulation of the feedback. We hypothesized four different models of the off-state regulatory feedback based on (A) total force, (B) active force, (C) sarcomere strain, and (D) passive force. We tested if these models could reproduce the isometric steady-state and dynamic LDA features predicted by an earlier published model of a human left-ventricle myocyte featuring purely phenomenological length dependences. The results suggest that only total-force feedback (A) is capable of reproducing the expected behaviors, but that passive tension could provide a length-dependent signal on which to initiate the feedback. Furthermore, by attributing LDA to off-state dynamics, our proposed model also qualitatively reproduces experimentally observed effects of the off-state-stabilizing drug mavacamten. Taken together, these results support off-state dynamics as a plausible primary mechanism underlying LDA.</p>","PeriodicalId":8922,"journal":{"name":"Biophysical journal","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11428202/pdf/","citationCount":"0","resultStr":"{\"title\":\"Cardiac length-dependent activation driven by force-dependent thick-filament dynamics.\",\"authors\":\"Alexandre Lewalle, Gregory Milburn, Kenneth S Campbell, Steven A Niederer\",\"doi\":\"10.1016/j.bpj.2024.05.025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The length-dependent activation (LDA) of maximum force and calcium sensitivity are established features of cardiac muscle contraction but the dominant underlying mechanisms remain to be fully clarified. Alongside the well-documented regulation of contraction via the thin filaments, experiments have identified an additional force-dependent thick-filament activation, whereby myosin heads parked in a so-called off state become available to generate force. This process produces a feedback effect that may potentially drive LDA. Using biomechanical modeling of a human left-ventricular myocyte, this study investigates the extent to which the off-state dynamics could, by itself, plausibly account for LDA, depending on the specific mathematical formulation of the feedback. We hypothesized four different models of the off-state regulatory feedback based on (A) total force, (B) active force, (C) sarcomere strain, and (D) passive force. We tested if these models could reproduce the isometric steady-state and dynamic LDA features predicted by an earlier published model of a human left-ventricle myocyte featuring purely phenomenological length dependences. The results suggest that only total-force feedback (A) is capable of reproducing the expected behaviors, but that passive tension could provide a length-dependent signal on which to initiate the feedback. Furthermore, by attributing LDA to off-state dynamics, our proposed model also qualitatively reproduces experimentally observed effects of the off-state-stabilizing drug mavacamten. Taken together, these results support off-state dynamics as a plausible primary mechanism underlying LDA.</p>\",\"PeriodicalId\":8922,\"journal\":{\"name\":\"Biophysical journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11428202/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysical journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.bpj.2024.05.025\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bpj.2024.05.025","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/28 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

最大肌力的长度依赖性激活(LDA)和钙敏感性是心肌收缩的既定特征,但其主要的内在机制仍有待完全阐明。除了有据可查的通过细丝调节收缩的机制外,实验还发现了另外一种依赖于力量的粗丝激活机制,即停滞在所谓 "关闭 "状态下的肌球蛋白头可以产生力量。这一过程产生的反馈效应可能会驱动 LDA。本研究利用人体左心室肌细胞的生物力学模型,研究了关闭状态动力学本身在多大程度上可以合理地解释 LDA,这取决于反馈的具体数学表述。我们根据(A)总力、(B)主动力、(C)肌节应变和(D)被动力假设了四种不同的非状态调节反馈模型。我们测试了这些模型是否能重现早先发表的人类左心室肌细胞模型所预测的等长-稳态和动态 LDA 特征,该模型具有纯粹的现象学长度依赖性。结果表明,只有总力反馈(A)能够再现预期的行为,但被动张力可以提供一个长度依赖性信号来启动反馈。此外,通过将 LDA 归因于离态动力学,我们提出的模型还定性地再现了实验观察到的离态稳定药物 mavacamten 的效果。总之,这些结果支持将离态动力学作为 LDA 的一种可信的主要机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cardiac length-dependent activation driven by force-dependent thick-filament dynamics.

The length-dependent activation (LDA) of maximum force and calcium sensitivity are established features of cardiac muscle contraction but the dominant underlying mechanisms remain to be fully clarified. Alongside the well-documented regulation of contraction via the thin filaments, experiments have identified an additional force-dependent thick-filament activation, whereby myosin heads parked in a so-called off state become available to generate force. This process produces a feedback effect that may potentially drive LDA. Using biomechanical modeling of a human left-ventricular myocyte, this study investigates the extent to which the off-state dynamics could, by itself, plausibly account for LDA, depending on the specific mathematical formulation of the feedback. We hypothesized four different models of the off-state regulatory feedback based on (A) total force, (B) active force, (C) sarcomere strain, and (D) passive force. We tested if these models could reproduce the isometric steady-state and dynamic LDA features predicted by an earlier published model of a human left-ventricle myocyte featuring purely phenomenological length dependences. The results suggest that only total-force feedback (A) is capable of reproducing the expected behaviors, but that passive tension could provide a length-dependent signal on which to initiate the feedback. Furthermore, by attributing LDA to off-state dynamics, our proposed model also qualitatively reproduces experimentally observed effects of the off-state-stabilizing drug mavacamten. Taken together, these results support off-state dynamics as a plausible primary mechanism underlying LDA.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biophysical journal
Biophysical journal 生物-生物物理
CiteScore
6.10
自引率
5.90%
发文量
3090
审稿时长
2 months
期刊介绍: BJ publishes original articles, letters, and perspectives on important problems in modern biophysics. The papers should be written so as to be of interest to a broad community of biophysicists. BJ welcomes experimental studies that employ quantitative physical approaches for the study of biological systems, including or spanning scales from molecule to whole organism. Experimental studies of a purely descriptive or phenomenological nature, with no theoretical or mechanistic underpinning, are not appropriate for publication in BJ. Theoretical studies should offer new insights into the understanding ofexperimental results or suggest new experimentally testable hypotheses. Articles reporting significant methodological or technological advances, which have potential to open new areas of biophysical investigation, are also suitable for publication in BJ. Papers describing improvements in accuracy or speed of existing methods or extra detail within methods described previously are not suitable for BJ.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信