基于 4D 打印 MXene 的人工神经引导导管,用于增强周围神经损伤的再生能力。

IF 9.6 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Zhilong Wang, Yan Zheng, Liang Qiao, Yuanya Ma, Huajing Zeng, Jiachen Liang, Qian Ye, Kuangyu Shen, Bin Liu, Luyi Sun, Zengjie Fan
{"title":"基于 4D 打印 MXene 的人工神经引导导管,用于增强周围神经损伤的再生能力。","authors":"Zhilong Wang,&nbsp;Yan Zheng,&nbsp;Liang Qiao,&nbsp;Yuanya Ma,&nbsp;Huajing Zeng,&nbsp;Jiachen Liang,&nbsp;Qian Ye,&nbsp;Kuangyu Shen,&nbsp;Bin Liu,&nbsp;Luyi Sun,&nbsp;Zengjie Fan","doi":"10.1002/adhm.202401093","DOIUrl":null,"url":null,"abstract":"<p>Repairing larger defects (&gt;5 mm) in peripheral nerve injuries (PNIs) remains a significant challenge when using traditional artificial nerve guidance conduits (NGCs). A novel approach that combines 4D printing technology with poly(L-lactide-co-trimethylene carbonate) (PLATMC) and Ti<sub>3</sub>C<sub>2</sub>T<i><sub>x</sub></i> MXene nanosheets is proposed, thereby imparting shape memory properties to the NGCs. Upon body temperature activation, the printed sheet-like structure can quickly self-roll into a conduit-like structure, enabling optimal wrapping around nerve stumps. This design enhances nerve fixation and simplifies surgical procedures. Moreover, the integration of microchannel expertly crafted through 4D printing, along with the incorporation of MXene nanosheets, introduces electrical conductivity. This feature facilitates the guided and directional migration of nerve cells, rapidly accelerating the healing of the PNI. By leveraging these advanced technologies, the developed NGCs demonstrate remarkable potential in promoting peripheral nerve regeneration, leading to substantial improvements in muscle morphology and restored sciatic nerve function, comparable to outcomes achieved through autogenous nerve transplantation.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":"13 23","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"4D-Printed MXene-Based Artificial Nerve Guidance Conduit for Enhanced Regeneration of Peripheral Nerve Injuries\",\"authors\":\"Zhilong Wang,&nbsp;Yan Zheng,&nbsp;Liang Qiao,&nbsp;Yuanya Ma,&nbsp;Huajing Zeng,&nbsp;Jiachen Liang,&nbsp;Qian Ye,&nbsp;Kuangyu Shen,&nbsp;Bin Liu,&nbsp;Luyi Sun,&nbsp;Zengjie Fan\",\"doi\":\"10.1002/adhm.202401093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Repairing larger defects (&gt;5 mm) in peripheral nerve injuries (PNIs) remains a significant challenge when using traditional artificial nerve guidance conduits (NGCs). A novel approach that combines 4D printing technology with poly(L-lactide-co-trimethylene carbonate) (PLATMC) and Ti<sub>3</sub>C<sub>2</sub>T<i><sub>x</sub></i> MXene nanosheets is proposed, thereby imparting shape memory properties to the NGCs. Upon body temperature activation, the printed sheet-like structure can quickly self-roll into a conduit-like structure, enabling optimal wrapping around nerve stumps. This design enhances nerve fixation and simplifies surgical procedures. Moreover, the integration of microchannel expertly crafted through 4D printing, along with the incorporation of MXene nanosheets, introduces electrical conductivity. This feature facilitates the guided and directional migration of nerve cells, rapidly accelerating the healing of the PNI. By leveraging these advanced technologies, the developed NGCs demonstrate remarkable potential in promoting peripheral nerve regeneration, leading to substantial improvements in muscle morphology and restored sciatic nerve function, comparable to outcomes achieved through autogenous nerve transplantation.</p>\",\"PeriodicalId\":113,\"journal\":{\"name\":\"Advanced Healthcare Materials\",\"volume\":\"13 23\",\"pages\":\"\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Healthcare Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adhm.202401093\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adhm.202401093","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

使用传统的人工神经引导导管(NGCs)修复周围神经损伤(PNIs)中较大的缺损(> 5 毫米)仍然是一项重大挑战。我们提出了一种新方法,将 4D 打印技术与聚(L-乳酸-共三亚甲基碳酸酯)(PLATMC)和 Ti3C2Tx MXene 纳米片相结合,从而为 NGCs 赋予形状记忆特性。在体温激活时,打印出的片状结构可迅速自卷成导管状结构,从而实现对神经残端的最佳包裹。这种设计增强了神经固定效果,简化了手术过程。此外,通过 4D 打印技术精心制作的微通道与 MXene 纳米片材的结合,引入了导电性。这一特性有利于神经细胞的定向迁移,从而迅速加快 PNI 的愈合。通过利用这些先进技术,所开发的 NGCs 在促进周围神经再生方面展现出了显著的潜力,从而大大改善了肌肉形态并恢复了坐骨神经功能,其效果堪比自体神经移植。本文受版权保护。保留所有权利。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

4D-Printed MXene-Based Artificial Nerve Guidance Conduit for Enhanced Regeneration of Peripheral Nerve Injuries

4D-Printed MXene-Based Artificial Nerve Guidance Conduit for Enhanced Regeneration of Peripheral Nerve Injuries

Repairing larger defects (>5 mm) in peripheral nerve injuries (PNIs) remains a significant challenge when using traditional artificial nerve guidance conduits (NGCs). A novel approach that combines 4D printing technology with poly(L-lactide-co-trimethylene carbonate) (PLATMC) and Ti3C2Tx MXene nanosheets is proposed, thereby imparting shape memory properties to the NGCs. Upon body temperature activation, the printed sheet-like structure can quickly self-roll into a conduit-like structure, enabling optimal wrapping around nerve stumps. This design enhances nerve fixation and simplifies surgical procedures. Moreover, the integration of microchannel expertly crafted through 4D printing, along with the incorporation of MXene nanosheets, introduces electrical conductivity. This feature facilitates the guided and directional migration of nerve cells, rapidly accelerating the healing of the PNI. By leveraging these advanced technologies, the developed NGCs demonstrate remarkable potential in promoting peripheral nerve regeneration, leading to substantial improvements in muscle morphology and restored sciatic nerve function, comparable to outcomes achieved through autogenous nerve transplantation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Healthcare Materials
Advanced Healthcare Materials 工程技术-生物材料
CiteScore
14.40
自引率
3.00%
发文量
600
审稿时长
1.8 months
期刊介绍: Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信