Tae Yeul Kim, Minhee Kang, Hyang Jin Shim, On-Kyun Kang, Hee Jae Huh, Nam Yong Lee
{"title":"评估 QMAC-dRAST 系统 2.5 版对阳性血培养肉汤和菌落分离培养物中革兰氏阴性菌的快速抗菌药敏感性测试。","authors":"Tae Yeul Kim, Minhee Kang, Hyang Jin Shim, On-Kyun Kang, Hee Jae Huh, Nam Yong Lee","doi":"10.1002/jcla.25043","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>Rapid antimicrobial susceptibility testing (AST) for bloodstream infections (BSIs) facilitates the optimization of antimicrobial therapy, preventing antimicrobial resistance and improving patient outcomes. QMAC-dRAST (QuantaMatrix Inc., Korea) is a rapid AST platform based on microfluidic chip technology that performs AST directly using positive blood culture broth (PBCB). This study evaluated the performance of QMAC-dRAST for Gram-negative bacteria using PBCB and subcultured colony isolates, comparing it with that of VITEK 2 (bioMérieux, France) using broth microdilution (BMD) as the reference method.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>We included 141 Gram-negative blood culture isolates from patients with BSI and 12 carbapenemase-producing clinical isolates of Enterobacterales spiked into blood culture bottles. QMAC-dRAST performance was evaluated using PBCB and colony isolates, whereas VITEK 2 and BMD were tested only on colony isolates.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>For PBCB, QMAC-dRAST achieved 92.1% categorical agreement (CA), 95.3% essential agreement (EA), with 1.8% very major errors (VMEs), 3.5% major errors (MEs), and 5.2% minor errors (mEs). With colony isolates, it exhibited 92.5% CA and 95.1% EA, with 2.0% VMEs, 3.2% MEs, and 4.8% mEs. VITEK 2 showed 94.1% CA and 96.0% EA, with 4.3% VMEs, 0.4% MEs, and 4.3% mEs. QMAC-dRAST yielded elevated error rates for specific antimicrobial agents, with high VMEs for carbapenems and aminoglycosides. The median time to result for QMAC-dRAST was 5.9 h for PBCB samples and 6.1 h for subcultured colony isolates.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>The QMAC-dRAST system demonstrated considerable strengths and comparable performance to the VITEK 2 system; however, challenges were discerned with specific antimicrobial agents, underlining a necessity for improvement.</p>\n </section>\n </div>","PeriodicalId":15509,"journal":{"name":"Journal of Clinical Laboratory Analysis","volume":"38 9","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11137843/pdf/","citationCount":"0","resultStr":"{\"title\":\"Evaluation of the QMAC-dRAST System Version 2.5 for Rapid Antimicrobial Susceptibility Testing of Gram-Negative Bacteria From Positive Blood Culture Broth and Subcultured Colony Isolates\",\"authors\":\"Tae Yeul Kim, Minhee Kang, Hyang Jin Shim, On-Kyun Kang, Hee Jae Huh, Nam Yong Lee\",\"doi\":\"10.1002/jcla.25043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Background</h3>\\n \\n <p>Rapid antimicrobial susceptibility testing (AST) for bloodstream infections (BSIs) facilitates the optimization of antimicrobial therapy, preventing antimicrobial resistance and improving patient outcomes. QMAC-dRAST (QuantaMatrix Inc., Korea) is a rapid AST platform based on microfluidic chip technology that performs AST directly using positive blood culture broth (PBCB). This study evaluated the performance of QMAC-dRAST for Gram-negative bacteria using PBCB and subcultured colony isolates, comparing it with that of VITEK 2 (bioMérieux, France) using broth microdilution (BMD) as the reference method.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>We included 141 Gram-negative blood culture isolates from patients with BSI and 12 carbapenemase-producing clinical isolates of Enterobacterales spiked into blood culture bottles. QMAC-dRAST performance was evaluated using PBCB and colony isolates, whereas VITEK 2 and BMD were tested only on colony isolates.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>For PBCB, QMAC-dRAST achieved 92.1% categorical agreement (CA), 95.3% essential agreement (EA), with 1.8% very major errors (VMEs), 3.5% major errors (MEs), and 5.2% minor errors (mEs). With colony isolates, it exhibited 92.5% CA and 95.1% EA, with 2.0% VMEs, 3.2% MEs, and 4.8% mEs. VITEK 2 showed 94.1% CA and 96.0% EA, with 4.3% VMEs, 0.4% MEs, and 4.3% mEs. QMAC-dRAST yielded elevated error rates for specific antimicrobial agents, with high VMEs for carbapenems and aminoglycosides. The median time to result for QMAC-dRAST was 5.9 h for PBCB samples and 6.1 h for subcultured colony isolates.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusions</h3>\\n \\n <p>The QMAC-dRAST system demonstrated considerable strengths and comparable performance to the VITEK 2 system; however, challenges were discerned with specific antimicrobial agents, underlining a necessity for improvement.</p>\\n </section>\\n </div>\",\"PeriodicalId\":15509,\"journal\":{\"name\":\"Journal of Clinical Laboratory Analysis\",\"volume\":\"38 9\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11137843/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Clinical Laboratory Analysis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jcla.25043\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICAL LABORATORY TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Laboratory Analysis","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcla.25043","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
Evaluation of the QMAC-dRAST System Version 2.5 for Rapid Antimicrobial Susceptibility Testing of Gram-Negative Bacteria From Positive Blood Culture Broth and Subcultured Colony Isolates
Background
Rapid antimicrobial susceptibility testing (AST) for bloodstream infections (BSIs) facilitates the optimization of antimicrobial therapy, preventing antimicrobial resistance and improving patient outcomes. QMAC-dRAST (QuantaMatrix Inc., Korea) is a rapid AST platform based on microfluidic chip technology that performs AST directly using positive blood culture broth (PBCB). This study evaluated the performance of QMAC-dRAST for Gram-negative bacteria using PBCB and subcultured colony isolates, comparing it with that of VITEK 2 (bioMérieux, France) using broth microdilution (BMD) as the reference method.
Methods
We included 141 Gram-negative blood culture isolates from patients with BSI and 12 carbapenemase-producing clinical isolates of Enterobacterales spiked into blood culture bottles. QMAC-dRAST performance was evaluated using PBCB and colony isolates, whereas VITEK 2 and BMD were tested only on colony isolates.
Results
For PBCB, QMAC-dRAST achieved 92.1% categorical agreement (CA), 95.3% essential agreement (EA), with 1.8% very major errors (VMEs), 3.5% major errors (MEs), and 5.2% minor errors (mEs). With colony isolates, it exhibited 92.5% CA and 95.1% EA, with 2.0% VMEs, 3.2% MEs, and 4.8% mEs. VITEK 2 showed 94.1% CA and 96.0% EA, with 4.3% VMEs, 0.4% MEs, and 4.3% mEs. QMAC-dRAST yielded elevated error rates for specific antimicrobial agents, with high VMEs for carbapenems and aminoglycosides. The median time to result for QMAC-dRAST was 5.9 h for PBCB samples and 6.1 h for subcultured colony isolates.
Conclusions
The QMAC-dRAST system demonstrated considerable strengths and comparable performance to the VITEK 2 system; however, challenges were discerned with specific antimicrobial agents, underlining a necessity for improvement.
期刊介绍:
Journal of Clinical Laboratory Analysis publishes original articles on newly developing modes of technology and laboratory assays, with emphasis on their application in current and future clinical laboratory testing. This includes reports from the following fields: immunochemistry and toxicology, hematology and hematopathology, immunopathology, molecular diagnostics, microbiology, genetic testing, immunohematology, and clinical chemistry.