利用荧光检测光热红外(FL-PTIR)对自发荧光生物材料和光合微生物进行宽域超分辨率红外光谱分析和成像。

IF 2.2 3区 化学 Q2 INSTRUMENTS & INSTRUMENTATION
Applied Spectroscopy Pub Date : 2024-11-01 Epub Date: 2024-05-27 DOI:10.1177/00037028241256978
Craig B Prater, Kevin J Kjoller, Andrew P D Stuart, David A Grigg, Rinuk 'Limurn, Kathleen M Gough
{"title":"利用荧光检测光热红外(FL-PTIR)对自发荧光生物材料和光合微生物进行宽域超分辨率红外光谱分析和成像。","authors":"Craig B Prater, Kevin J Kjoller, Andrew P D Stuart, David A Grigg, Rinuk 'Limurn, Kathleen M Gough","doi":"10.1177/00037028241256978","DOIUrl":null,"url":null,"abstract":"<p><p>We have demonstrated high-speed, super-resolution infrared (IR) spectroscopy and chemical imaging of autofluorescent biomaterials and organisms using camera-based widefield photothermal detection that takes advantage of temperature-dependent modulations of autofluorescent emission. A variety of biological materials and photosynthetic organisms exhibit strong autofluorescence emission under ultraviolet excitation and the autofluorescent emission has a very strong temperature dependence, of order 1%/K. Illuminating a sample with pulses of IR light from a wavelength-tunable laser source causes periodic localized sample temperature increases that result in a corresponding transient decrease in autofluorescent emission. A low-cost light-emitting diode-based fluorescence excitation source was used in combination with a conventional fluorescence microscopy camera to detect localized variations in autofluorescent emission over a wide area as an indicator of localized IR absorption. IR absorption image stacks were acquired over a range of IR wavelengths, including the fingerprint spectral range, enabling extraction of localized IR absorption spectra. We have applied widefield fluorescence detected photothermal IR (FL-PTIR) to an analysis of autofluorescent biological materials including collagen, leaf tissue, and photosynthetic organisms including diatoms and green microalgae cells. We have also demonstrated the FL-PTIR on live microalgae in water, demonstrating the potential for label-free dynamic chemical imaging of autofluorescent cells.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"1208-1219"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11563884/pdf/","citationCount":"0","resultStr":"{\"title\":\"Widefield Super-Resolution Infrared Spectroscopy and Imaging of Autofluorescent Biological Materials and Photosynthetic Microorganisms Using Fluorescence Detected Photothermal Infrared (FL-PTIR).\",\"authors\":\"Craig B Prater, Kevin J Kjoller, Andrew P D Stuart, David A Grigg, Rinuk 'Limurn, Kathleen M Gough\",\"doi\":\"10.1177/00037028241256978\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We have demonstrated high-speed, super-resolution infrared (IR) spectroscopy and chemical imaging of autofluorescent biomaterials and organisms using camera-based widefield photothermal detection that takes advantage of temperature-dependent modulations of autofluorescent emission. A variety of biological materials and photosynthetic organisms exhibit strong autofluorescence emission under ultraviolet excitation and the autofluorescent emission has a very strong temperature dependence, of order 1%/K. Illuminating a sample with pulses of IR light from a wavelength-tunable laser source causes periodic localized sample temperature increases that result in a corresponding transient decrease in autofluorescent emission. A low-cost light-emitting diode-based fluorescence excitation source was used in combination with a conventional fluorescence microscopy camera to detect localized variations in autofluorescent emission over a wide area as an indicator of localized IR absorption. IR absorption image stacks were acquired over a range of IR wavelengths, including the fingerprint spectral range, enabling extraction of localized IR absorption spectra. We have applied widefield fluorescence detected photothermal IR (FL-PTIR) to an analysis of autofluorescent biological materials including collagen, leaf tissue, and photosynthetic organisms including diatoms and green microalgae cells. We have also demonstrated the FL-PTIR on live microalgae in water, demonstrating the potential for label-free dynamic chemical imaging of autofluorescent cells.</p>\",\"PeriodicalId\":8253,\"journal\":{\"name\":\"Applied Spectroscopy\",\"volume\":\" \",\"pages\":\"1208-1219\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11563884/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Spectroscopy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/00037028241256978\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Spectroscopy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/00037028241256978","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/27 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

我们利用基于相机的宽场光热探测技术,利用自发荧光发射的温度依赖性调制,对自发荧光生物材料和生物体进行了高速、超分辨率红外(IR)光谱分析和化学成像。在紫外线激发下,各种生物材料和光合生物都会发出强烈的自发荧光,而且自发荧光的发射与温度的关系非常密切,约为 1%/K。用波长可调的激光源发出的红外光脉冲照射样品,会导致局部样品温度周期性升高,从而使自荧光发射率相应地瞬时降低。低成本的基于发光二极管的荧光激发光源与传统荧光显微照相机结合使用,可检测大面积自发荧光发射的局部变化,作为局部红外吸收的指标。在包括指纹光谱范围在内的一系列红外波长上获取红外吸收图像堆栈,从而提取局部红外吸收光谱。我们已将宽场荧光检测光热红外(FL-PTIR)应用于分析自发荧光生物材料,包括胶原蛋白、叶组织和光合生物(包括硅藻和绿色微藻细胞)。我们还对水中的活体微藻进行了 FL-PTIR 演示,证明了对自发荧光细胞进行无标记动态化学成像的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Widefield Super-Resolution Infrared Spectroscopy and Imaging of Autofluorescent Biological Materials and Photosynthetic Microorganisms Using Fluorescence Detected Photothermal Infrared (FL-PTIR).

We have demonstrated high-speed, super-resolution infrared (IR) spectroscopy and chemical imaging of autofluorescent biomaterials and organisms using camera-based widefield photothermal detection that takes advantage of temperature-dependent modulations of autofluorescent emission. A variety of biological materials and photosynthetic organisms exhibit strong autofluorescence emission under ultraviolet excitation and the autofluorescent emission has a very strong temperature dependence, of order 1%/K. Illuminating a sample with pulses of IR light from a wavelength-tunable laser source causes periodic localized sample temperature increases that result in a corresponding transient decrease in autofluorescent emission. A low-cost light-emitting diode-based fluorescence excitation source was used in combination with a conventional fluorescence microscopy camera to detect localized variations in autofluorescent emission over a wide area as an indicator of localized IR absorption. IR absorption image stacks were acquired over a range of IR wavelengths, including the fingerprint spectral range, enabling extraction of localized IR absorption spectra. We have applied widefield fluorescence detected photothermal IR (FL-PTIR) to an analysis of autofluorescent biological materials including collagen, leaf tissue, and photosynthetic organisms including diatoms and green microalgae cells. We have also demonstrated the FL-PTIR on live microalgae in water, demonstrating the potential for label-free dynamic chemical imaging of autofluorescent cells.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Spectroscopy
Applied Spectroscopy 工程技术-光谱学
CiteScore
6.60
自引率
5.70%
发文量
139
审稿时长
3.5 months
期刊介绍: Applied Spectroscopy is one of the world''s leading spectroscopy journals, publishing high-quality peer-reviewed articles, both fundamental and applied, covering all aspects of spectroscopy. Established in 1951, the journal is owned by the Society for Applied Spectroscopy and is published monthly. The journal is dedicated to fulfilling the mission of the Society to “…advance and disseminate knowledge and information concerning the art and science of spectroscopy and other allied sciences.”
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信