Jullian Rivera, Srinivas Bettadpur, John Griffin, Zhigui Kang, John Ries
{"title":"在麦克唐纳大地测量天文台测量千米基线上 1 毫米精确度的当地测量系线","authors":"Jullian Rivera, Srinivas Bettadpur, John Griffin, Zhigui Kang, John Ries","doi":"10.1007/s00190-024-01853-2","DOIUrl":null,"url":null,"abstract":"<p>The goal for the next generation of terrestrial reference frames (TRF) is to achieve a 1-mm- and 0.1-mm/yr-accurate frame realization through the combination of reference station solutions by multi-technique geodetic observatories. A potentially significant source of error in TRF realizations is the inter-system ties between the instruments at multi-technique stations, usually independently determined through ground-based local surveying. The quality of local tie surveys is varied and inconsistent, largely due to differences in measurement techniques, surveying instruments, site conditions/geometries, and processing methods. The Global Geodetic Observing System (GGOS) has tried to address these problems by issuing guidelines for the construction and layout of future multi-technique observatories, promoting uniformity and quality while minimizing existing problems with local surveying that are exacerbated over longer baseline distances. However, not every observatory is going to be able to completely satisfy these guidelines, and in this work, a successful endeavor to satisfy the accuracy goals while exceeding the GGOS baseline guideline is detailed for the McDonald Geodetic Observatory (MGO) in the Davis Mountains of Texas, USA. MGO consists of a VLBI Geodetic Observing System (VGOS), infrastructure in place for a Space Geodesy Satellite Laser Ranging (SGSLR) telescope, and several Global Navigation Satellite Systems (GNSS) stations spanning a 900 m baseline and a 120 m elevation change. The results of the local ties between the GNSS stations across the near-kilometer baseline, as measured from their antenna reference points, show sub-mm precision and 1 mm accuracy validated through repeatability across several surveys conducted in 2021as well as 1 mm consistency with the monthly averaged daily solutions of the GNSS-based positioning. In this paper, we report these results as well as the framework of the surveys with sufficient detail and rigor in order to give confidence to the quality claims and to present the novel design and techniques employed in the procedure, processing, and error-budget analysis, which were determined through iterative research methods across repeated survey campaigns.</p>","PeriodicalId":54822,"journal":{"name":"Journal of Geodesy","volume":"44 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measuring 1-mm-accurate local survey ties over kilometer baselines at McDonald Geodetic Observatory\",\"authors\":\"Jullian Rivera, Srinivas Bettadpur, John Griffin, Zhigui Kang, John Ries\",\"doi\":\"10.1007/s00190-024-01853-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The goal for the next generation of terrestrial reference frames (TRF) is to achieve a 1-mm- and 0.1-mm/yr-accurate frame realization through the combination of reference station solutions by multi-technique geodetic observatories. A potentially significant source of error in TRF realizations is the inter-system ties between the instruments at multi-technique stations, usually independently determined through ground-based local surveying. The quality of local tie surveys is varied and inconsistent, largely due to differences in measurement techniques, surveying instruments, site conditions/geometries, and processing methods. The Global Geodetic Observing System (GGOS) has tried to address these problems by issuing guidelines for the construction and layout of future multi-technique observatories, promoting uniformity and quality while minimizing existing problems with local surveying that are exacerbated over longer baseline distances. However, not every observatory is going to be able to completely satisfy these guidelines, and in this work, a successful endeavor to satisfy the accuracy goals while exceeding the GGOS baseline guideline is detailed for the McDonald Geodetic Observatory (MGO) in the Davis Mountains of Texas, USA. MGO consists of a VLBI Geodetic Observing System (VGOS), infrastructure in place for a Space Geodesy Satellite Laser Ranging (SGSLR) telescope, and several Global Navigation Satellite Systems (GNSS) stations spanning a 900 m baseline and a 120 m elevation change. The results of the local ties between the GNSS stations across the near-kilometer baseline, as measured from their antenna reference points, show sub-mm precision and 1 mm accuracy validated through repeatability across several surveys conducted in 2021as well as 1 mm consistency with the monthly averaged daily solutions of the GNSS-based positioning. In this paper, we report these results as well as the framework of the surveys with sufficient detail and rigor in order to give confidence to the quality claims and to present the novel design and techniques employed in the procedure, processing, and error-budget analysis, which were determined through iterative research methods across repeated survey campaigns.</p>\",\"PeriodicalId\":54822,\"journal\":{\"name\":\"Journal of Geodesy\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geodesy\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s00190-024-01853-2\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geodesy","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00190-024-01853-2","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Measuring 1-mm-accurate local survey ties over kilometer baselines at McDonald Geodetic Observatory
The goal for the next generation of terrestrial reference frames (TRF) is to achieve a 1-mm- and 0.1-mm/yr-accurate frame realization through the combination of reference station solutions by multi-technique geodetic observatories. A potentially significant source of error in TRF realizations is the inter-system ties between the instruments at multi-technique stations, usually independently determined through ground-based local surveying. The quality of local tie surveys is varied and inconsistent, largely due to differences in measurement techniques, surveying instruments, site conditions/geometries, and processing methods. The Global Geodetic Observing System (GGOS) has tried to address these problems by issuing guidelines for the construction and layout of future multi-technique observatories, promoting uniformity and quality while minimizing existing problems with local surveying that are exacerbated over longer baseline distances. However, not every observatory is going to be able to completely satisfy these guidelines, and in this work, a successful endeavor to satisfy the accuracy goals while exceeding the GGOS baseline guideline is detailed for the McDonald Geodetic Observatory (MGO) in the Davis Mountains of Texas, USA. MGO consists of a VLBI Geodetic Observing System (VGOS), infrastructure in place for a Space Geodesy Satellite Laser Ranging (SGSLR) telescope, and several Global Navigation Satellite Systems (GNSS) stations spanning a 900 m baseline and a 120 m elevation change. The results of the local ties between the GNSS stations across the near-kilometer baseline, as measured from their antenna reference points, show sub-mm precision and 1 mm accuracy validated through repeatability across several surveys conducted in 2021as well as 1 mm consistency with the monthly averaged daily solutions of the GNSS-based positioning. In this paper, we report these results as well as the framework of the surveys with sufficient detail and rigor in order to give confidence to the quality claims and to present the novel design and techniques employed in the procedure, processing, and error-budget analysis, which were determined through iterative research methods across repeated survey campaigns.
期刊介绍:
The Journal of Geodesy is an international journal concerned with the study of scientific problems of geodesy and related interdisciplinary sciences. Peer-reviewed papers are published on theoretical or modeling studies, and on results of experiments and interpretations. Besides original research papers, the journal includes commissioned review papers on topical subjects and special issues arising from chosen scientific symposia or workshops. The journal covers the whole range of geodetic science and reports on theoretical and applied studies in research areas such as:
-Positioning
-Reference frame
-Geodetic networks
-Modeling and quality control
-Space geodesy
-Remote sensing
-Gravity fields
-Geodynamics