针对 SARS-CoV-2 感染的一些市售抗病毒药物及其衍生物的分子模型。

Narra J Pub Date : 2024-04-01 Epub Date: 2024-04-30 DOI:10.52225/narra.v4i1.319
Mohammad Arman, Safaet Alam, Rifat A Maruf, Ziaus Shams, Mohammad N Islam
{"title":"针对 SARS-CoV-2 感染的一些市售抗病毒药物及其衍生物的分子模型。","authors":"Mohammad Arman, Safaet Alam, Rifat A Maruf, Ziaus Shams, Mohammad N Islam","doi":"10.52225/narra.v4i1.319","DOIUrl":null,"url":null,"abstract":"<p><p>Numerous prior studies have identified therapeutic targets that could effectively combat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, including the angiotensin-converting enzyme 2 (ACE2) receptor, RNA-dependent RNA polymerase (RdRp), and Main protease (Mpro). In parallel, antiviral compounds like abacavir, acyclovir, adefovir, amantadine, amprenavir, darunavir, didanosine, oseltamivir, penciclovir, and tenofovir are under investigation for their potential in drug repurposing to address this infection. The aim of the study was to determine the effect of modifying the functional groups of the aforementioned antivirals in silico. Using the genetic optimization for ligand docking algorithm on software Maestro (version 11.1), the modified antivirals were docked onto ACE2 receptor, RdRp, and Mpro. Using QuickProp (Maestro v11.1), PASS (prediction of activity spectra for the substances), and altogether with SwissADME, the ADMET (absorption, distribution, metabolism, excretion, and toxicity) of the modified antivirals, as well as their bioavailability and the predicted activity spectra, were determined. Discovery studio software was used to undertake post-docking analysis. Among the 10 antivirals, N(CH<sub>3</sub>)<sub>2</sub> derivative of darunavir, N(CH<sub>3</sub>)<sub>2</sub> derivative of amprenavir and NCH<sub>3</sub> derivative of darunavir exhibited best binding affinities with ACE2 receptor (docking scores: -10.333, -9.527 and -9.695 kJ/mol, respectively). Moreover, NCH<sub>3</sub> derivative of abacavir (-6.506 kJ/mol), NO<sub>2</sub> derivative of didanosine (-6.877 kJ/mol), NCH<sub>3</sub> derivative of darunavir (-7.618 kJ/mol) exerted promising affinity to Mpro. In conclusion, the results of the in silico screenings can serve as a useful information for future experimental works.</p>","PeriodicalId":517416,"journal":{"name":"Narra J","volume":"4 1","pages":"e319"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11125382/pdf/","citationCount":"0","resultStr":"{\"title\":\"Molecular modeling of some commercially available antiviral drugs and their derivatives against SARS-CoV-2 infection.\",\"authors\":\"Mohammad Arman, Safaet Alam, Rifat A Maruf, Ziaus Shams, Mohammad N Islam\",\"doi\":\"10.52225/narra.v4i1.319\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Numerous prior studies have identified therapeutic targets that could effectively combat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, including the angiotensin-converting enzyme 2 (ACE2) receptor, RNA-dependent RNA polymerase (RdRp), and Main protease (Mpro). In parallel, antiviral compounds like abacavir, acyclovir, adefovir, amantadine, amprenavir, darunavir, didanosine, oseltamivir, penciclovir, and tenofovir are under investigation for their potential in drug repurposing to address this infection. The aim of the study was to determine the effect of modifying the functional groups of the aforementioned antivirals in silico. Using the genetic optimization for ligand docking algorithm on software Maestro (version 11.1), the modified antivirals were docked onto ACE2 receptor, RdRp, and Mpro. Using QuickProp (Maestro v11.1), PASS (prediction of activity spectra for the substances), and altogether with SwissADME, the ADMET (absorption, distribution, metabolism, excretion, and toxicity) of the modified antivirals, as well as their bioavailability and the predicted activity spectra, were determined. Discovery studio software was used to undertake post-docking analysis. Among the 10 antivirals, N(CH<sub>3</sub>)<sub>2</sub> derivative of darunavir, N(CH<sub>3</sub>)<sub>2</sub> derivative of amprenavir and NCH<sub>3</sub> derivative of darunavir exhibited best binding affinities with ACE2 receptor (docking scores: -10.333, -9.527 and -9.695 kJ/mol, respectively). Moreover, NCH<sub>3</sub> derivative of abacavir (-6.506 kJ/mol), NO<sub>2</sub> derivative of didanosine (-6.877 kJ/mol), NCH<sub>3</sub> derivative of darunavir (-7.618 kJ/mol) exerted promising affinity to Mpro. In conclusion, the results of the in silico screenings can serve as a useful information for future experimental works.</p>\",\"PeriodicalId\":517416,\"journal\":{\"name\":\"Narra J\",\"volume\":\"4 1\",\"pages\":\"e319\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11125382/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Narra J\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52225/narra.v4i1.319\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/4/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Narra J","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52225/narra.v4i1.319","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/30 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

此前的大量研究已经确定了可以有效对抗严重急性呼吸系统综合征冠状病毒 2(SARS-CoV-2)感染的治疗靶点,包括血管紧张素转换酶 2(ACE2)受体、RNA 依赖性 RNA 聚合酶(RdRp)和主要蛋白酶(Mpro)。与此同时,阿巴卡韦、阿昔洛韦、阿德福韦酯、金刚烷胺、安普那韦、达鲁那韦、地达诺星、奥司他韦、喷昔洛韦和替诺福韦等抗病毒化合物也在研究中,以寻找它们在针对这种感染的药物再利用方面的潜力。本研究的目的是确定对上述抗病毒药物的官能团进行硅学修饰的效果。利用 Maestro(11.1 版)软件的配体对接遗传优化算法,将修饰后的抗病毒药物与 ACE2 受体、RdRp 和 Mpro 进行对接。利用 QuickProp(Maestro v11.1)、PASS(物质活性谱预测)和 SwissADME,确定了改良抗病毒药物的 ADMET(吸收、分布、代谢、排泄和毒性)、生物利用度和活性谱预测。使用 Discovery studio 软件进行了对接后分析。在 10 种抗病毒药物中,达鲁那韦的 N(CH3)2 衍生物、安普那韦的 N(CH3)2 衍生物和达鲁那韦的 NCH3 衍生物与 ACE2 受体的结合亲和力最好(对接得分分别为-10.333、-9.527 和 -9.695 kJ/mol)。此外,阿巴卡韦的 NCH3 衍生物(-6.506 kJ/mol)、地达诺辛的 NO2 衍生物(-6.877 kJ/mol)和达鲁那韦的 NCH3 衍生物(-7.618 kJ/mol)与 Mpro 的亲和力也很好。总之,硅学筛选的结果可以为今后的实验工作提供有用的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Molecular modeling of some commercially available antiviral drugs and their derivatives against SARS-CoV-2 infection.

Numerous prior studies have identified therapeutic targets that could effectively combat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, including the angiotensin-converting enzyme 2 (ACE2) receptor, RNA-dependent RNA polymerase (RdRp), and Main protease (Mpro). In parallel, antiviral compounds like abacavir, acyclovir, adefovir, amantadine, amprenavir, darunavir, didanosine, oseltamivir, penciclovir, and tenofovir are under investigation for their potential in drug repurposing to address this infection. The aim of the study was to determine the effect of modifying the functional groups of the aforementioned antivirals in silico. Using the genetic optimization for ligand docking algorithm on software Maestro (version 11.1), the modified antivirals were docked onto ACE2 receptor, RdRp, and Mpro. Using QuickProp (Maestro v11.1), PASS (prediction of activity spectra for the substances), and altogether with SwissADME, the ADMET (absorption, distribution, metabolism, excretion, and toxicity) of the modified antivirals, as well as their bioavailability and the predicted activity spectra, were determined. Discovery studio software was used to undertake post-docking analysis. Among the 10 antivirals, N(CH3)2 derivative of darunavir, N(CH3)2 derivative of amprenavir and NCH3 derivative of darunavir exhibited best binding affinities with ACE2 receptor (docking scores: -10.333, -9.527 and -9.695 kJ/mol, respectively). Moreover, NCH3 derivative of abacavir (-6.506 kJ/mol), NO2 derivative of didanosine (-6.877 kJ/mol), NCH3 derivative of darunavir (-7.618 kJ/mol) exerted promising affinity to Mpro. In conclusion, the results of the in silico screenings can serve as a useful information for future experimental works.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信