Paloma Tejera-Nevado, Emilio Serrano, Ana González-Herrero, Rodrigo Bermejo, Alejandro Rodríguez-González
{"title":"释放人工智能模型的力量:通过比较分析探索蛋白质折叠预测。","authors":"Paloma Tejera-Nevado, Emilio Serrano, Ana González-Herrero, Rodrigo Bermejo, Alejandro Rodríguez-González","doi":"10.1515/jib-2023-0041","DOIUrl":null,"url":null,"abstract":"<p><p>Protein structure determination has made progress with the aid of deep learning models, enabling the prediction of protein folding from protein sequences. However, obtaining accurate predictions becomes essential in certain cases where the protein structure remains undescribed. This is particularly challenging when dealing with rare, diverse structures and complex sample preparation. Different metrics assess prediction reliability and offer insights into result strength, providing a comprehensive understanding of protein structure by combining different models. In a previous study, two proteins named ARM58 and ARM56 were investigated. These proteins contain four domains of unknown function and are present in <i>Leishmania</i> spp. ARM refers to an antimony resistance marker. The study's main objective is to assess the accuracy of the model's predictions, thereby providing insights into the complexities and supporting metrics underlying these findings. The analysis also extends to the comparison of predictions obtained from other species and organisms. Notably, one of these proteins shares an ortholog with <i>Trypanosoma cruzi</i> and <i>Trypanosoma brucei</i>, leading further significance to our analysis. This attempt underscored the importance of evaluating the diverse outputs from deep learning models, facilitating comparisons across different organisms and proteins. This becomes particularly pertinent in cases where no previous structural information is available.</p>","PeriodicalId":53625,"journal":{"name":"Journal of Integrative Bioinformatics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11377126/pdf/","citationCount":"0","resultStr":"{\"title\":\"Unlocking the power of AI models: exploring protein folding prediction through comparative analysis.\",\"authors\":\"Paloma Tejera-Nevado, Emilio Serrano, Ana González-Herrero, Rodrigo Bermejo, Alejandro Rodríguez-González\",\"doi\":\"10.1515/jib-2023-0041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Protein structure determination has made progress with the aid of deep learning models, enabling the prediction of protein folding from protein sequences. However, obtaining accurate predictions becomes essential in certain cases where the protein structure remains undescribed. This is particularly challenging when dealing with rare, diverse structures and complex sample preparation. Different metrics assess prediction reliability and offer insights into result strength, providing a comprehensive understanding of protein structure by combining different models. In a previous study, two proteins named ARM58 and ARM56 were investigated. These proteins contain four domains of unknown function and are present in <i>Leishmania</i> spp. ARM refers to an antimony resistance marker. The study's main objective is to assess the accuracy of the model's predictions, thereby providing insights into the complexities and supporting metrics underlying these findings. The analysis also extends to the comparison of predictions obtained from other species and organisms. Notably, one of these proteins shares an ortholog with <i>Trypanosoma cruzi</i> and <i>Trypanosoma brucei</i>, leading further significance to our analysis. This attempt underscored the importance of evaluating the diverse outputs from deep learning models, facilitating comparisons across different organisms and proteins. This becomes particularly pertinent in cases where no previous structural information is available.</p>\",\"PeriodicalId\":53625,\"journal\":{\"name\":\"Journal of Integrative Bioinformatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11377126/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Integrative Bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jib-2023-0041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrative Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jib-2023-0041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
在深度学习模型的帮助下,蛋白质结构测定取得了进展,能够根据蛋白质序列预测蛋白质折叠。然而,在某些蛋白质结构仍未被描述的情况下,获得准确的预测变得至关重要。在处理罕见、多样的结构和复杂的样品制备时,这尤其具有挑战性。不同的指标可以评估预测的可靠性并深入了解预测结果的强度,通过结合不同的模型提供对蛋白质结构的全面了解。在之前的一项研究中,对名为 ARM58 和 ARM56 的两种蛋白质进行了研究。这两个蛋白含有四个功能未知的结构域,存在于利什曼原虫中。 ARM 指的是抗锑标记。研究的主要目的是评估模型预测的准确性,从而深入了解这些发现背后的复杂性和支持性指标。分析还扩展到了与其他物种和生物的预测结果进行比较。值得注意的是,其中一个蛋白质与克鲁斯锥虫和布氏锥虫有一个同源物,这为我们的分析带来了进一步的意义。这一尝试强调了评估深度学习模型不同输出结果的重要性,有助于在不同生物体和蛋白质之间进行比较。在没有先前结构信息的情况下,这一点尤为重要。
Unlocking the power of AI models: exploring protein folding prediction through comparative analysis.
Protein structure determination has made progress with the aid of deep learning models, enabling the prediction of protein folding from protein sequences. However, obtaining accurate predictions becomes essential in certain cases where the protein structure remains undescribed. This is particularly challenging when dealing with rare, diverse structures and complex sample preparation. Different metrics assess prediction reliability and offer insights into result strength, providing a comprehensive understanding of protein structure by combining different models. In a previous study, two proteins named ARM58 and ARM56 were investigated. These proteins contain four domains of unknown function and are present in Leishmania spp. ARM refers to an antimony resistance marker. The study's main objective is to assess the accuracy of the model's predictions, thereby providing insights into the complexities and supporting metrics underlying these findings. The analysis also extends to the comparison of predictions obtained from other species and organisms. Notably, one of these proteins shares an ortholog with Trypanosoma cruzi and Trypanosoma brucei, leading further significance to our analysis. This attempt underscored the importance of evaluating the diverse outputs from deep learning models, facilitating comparisons across different organisms and proteins. This becomes particularly pertinent in cases where no previous structural information is available.