固体脂质纳米颗粒:固体脂质纳米颗粒:生物医学应用与制备综述》。

Q2 Pharmacology, Toxicology and Pharmaceutics
Mayukh Jana, Ujjwal Kumar Biswas, Chandra Sekhar Patra, Biplab Debnath, Suraj Sharma, Sweet Naskar
{"title":"固体脂质纳米颗粒:固体脂质纳米颗粒:生物医学应用与制备综述》。","authors":"Mayukh Jana, Ujjwal Kumar Biswas, Chandra Sekhar Patra, Biplab Debnath, Suraj Sharma, Sweet Naskar","doi":"10.2174/0122117385312175240502100018","DOIUrl":null,"url":null,"abstract":"<p><p>Solid lipid nanoparticles (SLNs) are gaining significant attention in the pharmaceutical industry due to their biocompatibility and biodegradability, making them a popular functional nanocarrier. SLNs are a popular nanocarrier due to their ability to bypass the spleen and liver, offer high drug stability, and improve bioavailability, sterilization, immobilization, targeted drug release, and biocompatible ingredients. This article discusses various SLN preparation techniques, including high shear homogenization, hot homogenization, cold homogenization, microemulsion-based, solvent evaporation, solvent emulsification-evaporation, supercritical fluid-based, spray drying, double emulsion, and precipitation techniques, focusing on methodological aspects. This review discusses the physicochemical behavior of SLNs, including drug loading, release, particle size, stability, cytotoxicity, and cellular uptake, and their major biomedical applications.</p>","PeriodicalId":19774,"journal":{"name":"Pharmaceutical nanotechnology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solid Lipid Nanoparticles: A Review of their Biomedical Applications and Preparation.\",\"authors\":\"Mayukh Jana, Ujjwal Kumar Biswas, Chandra Sekhar Patra, Biplab Debnath, Suraj Sharma, Sweet Naskar\",\"doi\":\"10.2174/0122117385312175240502100018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Solid lipid nanoparticles (SLNs) are gaining significant attention in the pharmaceutical industry due to their biocompatibility and biodegradability, making them a popular functional nanocarrier. SLNs are a popular nanocarrier due to their ability to bypass the spleen and liver, offer high drug stability, and improve bioavailability, sterilization, immobilization, targeted drug release, and biocompatible ingredients. This article discusses various SLN preparation techniques, including high shear homogenization, hot homogenization, cold homogenization, microemulsion-based, solvent evaporation, solvent emulsification-evaporation, supercritical fluid-based, spray drying, double emulsion, and precipitation techniques, focusing on methodological aspects. This review discusses the physicochemical behavior of SLNs, including drug loading, release, particle size, stability, cytotoxicity, and cellular uptake, and their major biomedical applications.</p>\",\"PeriodicalId\":19774,\"journal\":{\"name\":\"Pharmaceutical nanotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/0122117385312175240502100018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0122117385312175240502100018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0

摘要

固体脂质纳米颗粒(SLNs)因其生物相容性和生物可降解性而成为一种流行的功能性纳米载体,在制药行业受到极大关注。SLNs 能够绕过脾脏和肝脏,具有较高的药物稳定性,并能提高生物利用度、杀菌、固定、靶向药物释放和生物相容性成分,因此是一种广受欢迎的纳米载体。本文讨论了各种 SLN 制备技术,包括高剪切均质、热均质、冷均质、微乳化、溶剂蒸发、溶剂乳化-蒸发、超临界流体、喷雾干燥、双乳化和沉淀技术,重点关注方法学方面。本综述讨论了 SLNs 的理化行为,包括药物负载、释放、粒度、稳定性、细胞毒性和细胞吸收,以及它们的主要生物医学应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solid Lipid Nanoparticles: A Review of their Biomedical Applications and Preparation.

Solid lipid nanoparticles (SLNs) are gaining significant attention in the pharmaceutical industry due to their biocompatibility and biodegradability, making them a popular functional nanocarrier. SLNs are a popular nanocarrier due to their ability to bypass the spleen and liver, offer high drug stability, and improve bioavailability, sterilization, immobilization, targeted drug release, and biocompatible ingredients. This article discusses various SLN preparation techniques, including high shear homogenization, hot homogenization, cold homogenization, microemulsion-based, solvent evaporation, solvent emulsification-evaporation, supercritical fluid-based, spray drying, double emulsion, and precipitation techniques, focusing on methodological aspects. This review discusses the physicochemical behavior of SLNs, including drug loading, release, particle size, stability, cytotoxicity, and cellular uptake, and their major biomedical applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pharmaceutical nanotechnology
Pharmaceutical nanotechnology Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
4.20
自引率
0.00%
发文量
46
期刊介绍: Pharmaceutical Nanotechnology publishes original manuscripts, full-length/mini reviews, thematic issues, rapid technical notes and commentaries that provide insights into the synthesis, characterisation and pharmaceutical (or diagnostic) application of materials at the nanoscale. The nanoscale is defined as a size range of below 1 µm. Scientific findings related to micro and macro systems with functionality residing within features defined at the nanoscale are also within the scope of the journal. Manuscripts detailing the synthesis, exhaustive characterisation, biological evaluation, clinical testing and/ or toxicological assessment of nanomaterials are of particular interest to the journal’s readership. Articles should be self contained, centred around a well founded hypothesis and should aim to showcase the pharmaceutical/ diagnostic implications of the nanotechnology approach. Manuscripts should aim, wherever possible, to demonstrate the in vivo impact of any nanotechnological intervention. As reducing a material to the nanoscale is capable of fundamentally altering the material’s properties, the journal’s readership is particularly interested in new characterisation techniques and the advanced properties that originate from this size reduction. Both bottom up and top down approaches to the realisation of nanomaterials lie within the scope of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信