{"title":"聚乙烯醇基血管移植物制造和性能优化的最新进展。","authors":"Yixuan Liu, Zichun Gao, Xinrong Yu, Wenjiao Lin, He Lian, Zhaoxu Meng","doi":"10.1002/mabi.202400093","DOIUrl":null,"url":null,"abstract":"<p>Cardiovascular disease is one of the diseases with the highest morbidity and mortality rates worldwide, and coronary artery bypass grafting (CABG) is a fast and effective treatment. More researchers are investigating in artificial blood vessels due to the limitations of autologous blood vessels. Despite the availability of large-diameter vascular grafts (<i>Ø</i> > 6 mm) for clinical use, small-diameter vascular grafts (<i>Ø</i> < 6 mm) have been a challenge for researchers to overcome in recent years. Vascular grafts made of polyvinyl alcohol (PVA) and PVA-based composites have excellent biocompatibility and mechanical characteristics. In order to gain a clearer and more specific understanding of the progress in PVA vascular graft research, particularly regarding the preparation methods, principles, and functionality of PVA vascular graft, this article discusses the mechanical properties, biocompatibility, blood compatibility, and other properties of PVA vascular graft prepared or enhanced with different blends using various techniques that mimic natural blood vessels. The findings reveal the feasibility and promising potential of PVA or PVA-based composite materials as vascular grafts.</p>","PeriodicalId":18103,"journal":{"name":"Macromolecular bioscience","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent Advances in the Fabrication and Performance Optimization of Polyvinyl Alcohol Based Vascular Grafts\",\"authors\":\"Yixuan Liu, Zichun Gao, Xinrong Yu, Wenjiao Lin, He Lian, Zhaoxu Meng\",\"doi\":\"10.1002/mabi.202400093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Cardiovascular disease is one of the diseases with the highest morbidity and mortality rates worldwide, and coronary artery bypass grafting (CABG) is a fast and effective treatment. More researchers are investigating in artificial blood vessels due to the limitations of autologous blood vessels. Despite the availability of large-diameter vascular grafts (<i>Ø</i> > 6 mm) for clinical use, small-diameter vascular grafts (<i>Ø</i> < 6 mm) have been a challenge for researchers to overcome in recent years. Vascular grafts made of polyvinyl alcohol (PVA) and PVA-based composites have excellent biocompatibility and mechanical characteristics. In order to gain a clearer and more specific understanding of the progress in PVA vascular graft research, particularly regarding the preparation methods, principles, and functionality of PVA vascular graft, this article discusses the mechanical properties, biocompatibility, blood compatibility, and other properties of PVA vascular graft prepared or enhanced with different blends using various techniques that mimic natural blood vessels. The findings reveal the feasibility and promising potential of PVA or PVA-based composite materials as vascular grafts.</p>\",\"PeriodicalId\":18103,\"journal\":{\"name\":\"Macromolecular bioscience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular bioscience\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mabi.202400093\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular bioscience","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mabi.202400093","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Recent Advances in the Fabrication and Performance Optimization of Polyvinyl Alcohol Based Vascular Grafts
Cardiovascular disease is one of the diseases with the highest morbidity and mortality rates worldwide, and coronary artery bypass grafting (CABG) is a fast and effective treatment. More researchers are investigating in artificial blood vessels due to the limitations of autologous blood vessels. Despite the availability of large-diameter vascular grafts (Ø > 6 mm) for clinical use, small-diameter vascular grafts (Ø < 6 mm) have been a challenge for researchers to overcome in recent years. Vascular grafts made of polyvinyl alcohol (PVA) and PVA-based composites have excellent biocompatibility and mechanical characteristics. In order to gain a clearer and more specific understanding of the progress in PVA vascular graft research, particularly regarding the preparation methods, principles, and functionality of PVA vascular graft, this article discusses the mechanical properties, biocompatibility, blood compatibility, and other properties of PVA vascular graft prepared or enhanced with different blends using various techniques that mimic natural blood vessels. The findings reveal the feasibility and promising potential of PVA or PVA-based composite materials as vascular grafts.
期刊介绍:
Macromolecular Bioscience is a leading journal at the intersection of polymer and materials sciences with life science and medicine. With an Impact Factor of 2.895 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)), it is currently ranked among the top biomaterials and polymer journals.
Macromolecular Bioscience offers an attractive mixture of high-quality Reviews, Feature Articles, Communications, and Full Papers.
With average reviewing times below 30 days, publication times of 2.5 months and listing in all major indices, including Medline, Macromolecular Bioscience is the journal of choice for your best contributions at the intersection of polymer and life sciences.