Daniela Angela Covino, Iole Farina, Laura Catapano, Silvia Sozzi, Francesca Spadaro, Serena Cecchetti, Cristina Purificato, Maria Cristina Gauzzi, Laura Fantuzzi
{"title":"原代人类巨噬细胞中的 CCL2 中和后,抗病毒因子 APOBEC3A 和 RSAD2 的诱导涉及 NF-kB、JAK/STAT 和 gp130 信号传导。","authors":"Daniela Angela Covino, Iole Farina, Laura Catapano, Silvia Sozzi, Francesca Spadaro, Serena Cecchetti, Cristina Purificato, Maria Cristina Gauzzi, Laura Fantuzzi","doi":"10.1093/jleuko/qiae123","DOIUrl":null,"url":null,"abstract":"<p><p>The CCL2/CC chemokine receptor 2 axis plays key roles in the pathogenesis of HIV-1 infection. We previously reported that exposure of monocyte-derived macrophages to CCL2 neutralizing antibody (αCCL2 Ab) restricted HIV-1 replication at postentry steps of the viral life cycle. This effect was associated with induction of transcripts coding for innate antiviral proteins, including APOBEC3A and RSAD2. This study aimed at identifying the signaling pathways involved in induction of these factors by CCL2 blocking in monocyte-derived macrophages. Through a combination of pharmacologic inhibition, quantitative reverse transcription polymerase chain reaction, Western blotting, and confocal laser-scanning microscopy, we demonstrated that CCL2 neutralization activates the canonical NF-κB and JAK/STAT pathways, as assessed by time-dependent phosphorylation of IκB, STAT1, and STAT3 and p65 nuclear translocation. Furthermore, pharmacologic inhibition of IκB kinase and JAKs strongly reduced APOBEC3A and RSAD2 transcript accumulation elicited by αCCL2 Ab treatment. Interestingly, exposure of monocyte-derived macrophages to αCCL2 Ab resulted in induction of IL-6 family cytokines, and interference with glycoprotein 130, the common signal-transducing receptor subunit shared by these cytokines, inhibited APOBEC3A and RSAD2 upregulation triggered by CCL2 neutralization. These results provide novel insights into the signal transduction pathways underlying the activation of innate responses triggered by CCL2 neutralization in macrophages. Since this response was found to be associated with protective antiviral effects, the new findings may help design innovative therapeutic approaches targeting CCL2 to strengthen host innate immunity.</p>","PeriodicalId":16186,"journal":{"name":"Journal of Leukocyte Biology","volume":" ","pages":"876-889"},"PeriodicalIF":3.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Induction of the antiviral factors APOBEC3A and RSAD2 upon CCL2 neutralization in primary human macrophages involves NF-κB, JAK/STAT, and gp130 signaling.\",\"authors\":\"Daniela Angela Covino, Iole Farina, Laura Catapano, Silvia Sozzi, Francesca Spadaro, Serena Cecchetti, Cristina Purificato, Maria Cristina Gauzzi, Laura Fantuzzi\",\"doi\":\"10.1093/jleuko/qiae123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The CCL2/CC chemokine receptor 2 axis plays key roles in the pathogenesis of HIV-1 infection. We previously reported that exposure of monocyte-derived macrophages to CCL2 neutralizing antibody (αCCL2 Ab) restricted HIV-1 replication at postentry steps of the viral life cycle. This effect was associated with induction of transcripts coding for innate antiviral proteins, including APOBEC3A and RSAD2. This study aimed at identifying the signaling pathways involved in induction of these factors by CCL2 blocking in monocyte-derived macrophages. Through a combination of pharmacologic inhibition, quantitative reverse transcription polymerase chain reaction, Western blotting, and confocal laser-scanning microscopy, we demonstrated that CCL2 neutralization activates the canonical NF-κB and JAK/STAT pathways, as assessed by time-dependent phosphorylation of IκB, STAT1, and STAT3 and p65 nuclear translocation. Furthermore, pharmacologic inhibition of IκB kinase and JAKs strongly reduced APOBEC3A and RSAD2 transcript accumulation elicited by αCCL2 Ab treatment. Interestingly, exposure of monocyte-derived macrophages to αCCL2 Ab resulted in induction of IL-6 family cytokines, and interference with glycoprotein 130, the common signal-transducing receptor subunit shared by these cytokines, inhibited APOBEC3A and RSAD2 upregulation triggered by CCL2 neutralization. These results provide novel insights into the signal transduction pathways underlying the activation of innate responses triggered by CCL2 neutralization in macrophages. Since this response was found to be associated with protective antiviral effects, the new findings may help design innovative therapeutic approaches targeting CCL2 to strengthen host innate immunity.</p>\",\"PeriodicalId\":16186,\"journal\":{\"name\":\"Journal of Leukocyte Biology\",\"volume\":\" \",\"pages\":\"876-889\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Leukocyte Biology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/jleuko/qiae123\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Leukocyte Biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/jleuko/qiae123","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Induction of the antiviral factors APOBEC3A and RSAD2 upon CCL2 neutralization in primary human macrophages involves NF-κB, JAK/STAT, and gp130 signaling.
The CCL2/CC chemokine receptor 2 axis plays key roles in the pathogenesis of HIV-1 infection. We previously reported that exposure of monocyte-derived macrophages to CCL2 neutralizing antibody (αCCL2 Ab) restricted HIV-1 replication at postentry steps of the viral life cycle. This effect was associated with induction of transcripts coding for innate antiviral proteins, including APOBEC3A and RSAD2. This study aimed at identifying the signaling pathways involved in induction of these factors by CCL2 blocking in monocyte-derived macrophages. Through a combination of pharmacologic inhibition, quantitative reverse transcription polymerase chain reaction, Western blotting, and confocal laser-scanning microscopy, we demonstrated that CCL2 neutralization activates the canonical NF-κB and JAK/STAT pathways, as assessed by time-dependent phosphorylation of IκB, STAT1, and STAT3 and p65 nuclear translocation. Furthermore, pharmacologic inhibition of IκB kinase and JAKs strongly reduced APOBEC3A and RSAD2 transcript accumulation elicited by αCCL2 Ab treatment. Interestingly, exposure of monocyte-derived macrophages to αCCL2 Ab resulted in induction of IL-6 family cytokines, and interference with glycoprotein 130, the common signal-transducing receptor subunit shared by these cytokines, inhibited APOBEC3A and RSAD2 upregulation triggered by CCL2 neutralization. These results provide novel insights into the signal transduction pathways underlying the activation of innate responses triggered by CCL2 neutralization in macrophages. Since this response was found to be associated with protective antiviral effects, the new findings may help design innovative therapeutic approaches targeting CCL2 to strengthen host innate immunity.
期刊介绍:
JLB is a peer-reviewed, academic journal published by the Society for Leukocyte Biology for its members and the community of immunobiologists. The journal publishes papers devoted to the exploration of the cellular and molecular biology of granulocytes, mononuclear phagocytes, lymphocytes, NK cells, and other cells involved in host physiology and defense/resistance against disease. Since all cells in the body can directly or indirectly contribute to the maintenance of the integrity of the organism and restoration of homeostasis through repair, JLB also considers articles involving epithelial, endothelial, fibroblastic, neural, and other somatic cell types participating in host defense. Studies covering pathophysiology, cell development, differentiation and trafficking; fundamental, translational and clinical immunology, inflammation, extracellular mediators and effector molecules; receptors, signal transduction and genes are considered relevant. Research articles and reviews that provide a novel understanding in any of these fields are given priority as well as technical advances related to leukocyte research methods.