{"title":"癌症恶病质中的 EDA2R-NIK 信号转导","authors":"Samet Agca, Serkan Kir","doi":"10.1097/SPC.0000000000000705","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose of review: </strong>Cachexia is a debilitating condition causing weight loss and skeletal muscle wasting that negatively influences treatment and survival of cancer patients. The objective of this review is to describe recent discoveries on the role of a novel signaling pathway involving ectodysplasin A2 receptor (EDA2R) and nuclear factor κB (NFκB)-inducing kinase (NIK) in muscle atrophy.</p><p><strong>Recent findings: </strong>Studies identified tumor-induced upregulation of EDA2R expression in muscle tissues in pre-clinical cachexia models and patients with various cancers. Activation of EDA2R by its ligand promoted atrophy in cultured myotubes and muscle tissue, which depended on NIK activity. The non-canonical NFκB pathway via NIK also stimulated muscle atrophy. Mice lacking EDA2R or NIK were protected from muscle loss due to tumors. Tumor-induced cytokine oncostatin M (OSM) upregulated EDA2R expression in muscles whereas OSM receptor-deficient mice were resistant to muscle wasting.</p><p><strong>Summary: </strong>Recent discoveries revealed a mechanism involving EDA2R-NIK signaling and OSM that drives cancer-associated muscle loss, opening up new directions for designing anti-cachexia treatments. The therapeutic potential of targeting this mechanism to prevent muscle loss should be further investigated. Future research should also explore broader implications of the EDA2R-NIK pathway in other muscle wasting diseases and overall muscle health.</p>","PeriodicalId":48837,"journal":{"name":"Current Opinion in Supportive and Palliative Care","volume":" ","pages":"126-131"},"PeriodicalIF":1.9000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EDA2R-NIK signaling in cancer cachexia.\",\"authors\":\"Samet Agca, Serkan Kir\",\"doi\":\"10.1097/SPC.0000000000000705\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose of review: </strong>Cachexia is a debilitating condition causing weight loss and skeletal muscle wasting that negatively influences treatment and survival of cancer patients. The objective of this review is to describe recent discoveries on the role of a novel signaling pathway involving ectodysplasin A2 receptor (EDA2R) and nuclear factor κB (NFκB)-inducing kinase (NIK) in muscle atrophy.</p><p><strong>Recent findings: </strong>Studies identified tumor-induced upregulation of EDA2R expression in muscle tissues in pre-clinical cachexia models and patients with various cancers. Activation of EDA2R by its ligand promoted atrophy in cultured myotubes and muscle tissue, which depended on NIK activity. The non-canonical NFκB pathway via NIK also stimulated muscle atrophy. Mice lacking EDA2R or NIK were protected from muscle loss due to tumors. Tumor-induced cytokine oncostatin M (OSM) upregulated EDA2R expression in muscles whereas OSM receptor-deficient mice were resistant to muscle wasting.</p><p><strong>Summary: </strong>Recent discoveries revealed a mechanism involving EDA2R-NIK signaling and OSM that drives cancer-associated muscle loss, opening up new directions for designing anti-cachexia treatments. The therapeutic potential of targeting this mechanism to prevent muscle loss should be further investigated. Future research should also explore broader implications of the EDA2R-NIK pathway in other muscle wasting diseases and overall muscle health.</p>\",\"PeriodicalId\":48837,\"journal\":{\"name\":\"Current Opinion in Supportive and Palliative Care\",\"volume\":\" \",\"pages\":\"126-131\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Supportive and Palliative Care\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/SPC.0000000000000705\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Supportive and Palliative Care","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/SPC.0000000000000705","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/27 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
Purpose of review: Cachexia is a debilitating condition causing weight loss and skeletal muscle wasting that negatively influences treatment and survival of cancer patients. The objective of this review is to describe recent discoveries on the role of a novel signaling pathway involving ectodysplasin A2 receptor (EDA2R) and nuclear factor κB (NFκB)-inducing kinase (NIK) in muscle atrophy.
Recent findings: Studies identified tumor-induced upregulation of EDA2R expression in muscle tissues in pre-clinical cachexia models and patients with various cancers. Activation of EDA2R by its ligand promoted atrophy in cultured myotubes and muscle tissue, which depended on NIK activity. The non-canonical NFκB pathway via NIK also stimulated muscle atrophy. Mice lacking EDA2R or NIK were protected from muscle loss due to tumors. Tumor-induced cytokine oncostatin M (OSM) upregulated EDA2R expression in muscles whereas OSM receptor-deficient mice were resistant to muscle wasting.
Summary: Recent discoveries revealed a mechanism involving EDA2R-NIK signaling and OSM that drives cancer-associated muscle loss, opening up new directions for designing anti-cachexia treatments. The therapeutic potential of targeting this mechanism to prevent muscle loss should be further investigated. Future research should also explore broader implications of the EDA2R-NIK pathway in other muscle wasting diseases and overall muscle health.
期刊介绍:
A reader-friendly resource, Current Opinion in Supportive and Palliative Care provides an up-to-date account of the most important advances in the field of supportive and palliative care. Each issue contains either two or three sections delivering a diverse and comprehensive coverage of all the key issues, including end-of-life management, gastrointestinal systems and respiratory problems. Current Opinion in Supportive and Palliative Care is an indispensable journal for the busy clinician, researcher or student.