肾间质成纤维细胞中氧信号传导与铁代谢之间的相互关系

IF 2 4区 医学 Q3 NUTRITION & DIETETICS
Journal of Clinical Biochemistry and Nutrition Pub Date : 2024-05-01 Epub Date: 2024-02-28 DOI:10.3164/jcbn.24-8
Norio Suzuki, Yuma Iwamura, Koichiro Kato, Hirotaka Ishioka, Yusuke Konta, Koji Sato, Nao Uchida, Noa Koida, Hiroki Sekine, Tetsuhiro Tanaka, Naonori Kumagai, Taku Nakai
{"title":"肾间质成纤维细胞中氧信号传导与铁代谢之间的相互关系","authors":"Norio Suzuki, Yuma Iwamura, Koichiro Kato, Hirotaka Ishioka, Yusuke Konta, Koji Sato, Nao Uchida, Noa Koida, Hiroki Sekine, Tetsuhiro Tanaka, Naonori Kumagai, Taku Nakai","doi":"10.3164/jcbn.24-8","DOIUrl":null,"url":null,"abstract":"<p><p>To maintain the oxygen supply, the production of red blood cells (erythrocytes) is promoted under low-oxygen conditions (hypoxia). Oxygen is carried by hemoglobin in erythrocytes, in which the majority of the essential element iron in the body is contained. Because iron metabolism is strictly controlled in a semi-closed recycling system to protect cells from oxidative stress caused by iron, hypoxia-inducible erythropoiesis is closely coordinated by regulatory systems that mobilize stored iron for hemoglobin synthesis. The erythroid growth factor erythropoietin (EPO) is mainly secreted by interstitial fibroblasts in the renal cortex, which are known as renal EPO-producing (REP) cells, and promotes erythropoiesis and iron mobilization. Intriguingly, EPO production is strongly induced by hypoxia through iron-dependent pathways in REP cells. Here, we summarize recent studies on the network mechanisms linking hypoxia-inducible EPO production, erythropoiesis and iron metabolism. Additionally, we introduce disease mechanisms related to disorders in the network mediated by REP cell functions. Furthermore, we propose future studies regarding the application of renal cells derived from the urine of kidney disease patients to investigate the molecular pathology of chronic kidney disease and develop precise and personalized medicine for kidney disease.</p>","PeriodicalId":15429,"journal":{"name":"Journal of Clinical Biochemistry and Nutrition","volume":"74 3","pages":"179-184"},"PeriodicalIF":2.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11111471/pdf/","citationCount":"0","resultStr":"{\"title\":\"Crosstalk between oxygen signaling and iron metabolism in renal interstitial fibroblasts.\",\"authors\":\"Norio Suzuki, Yuma Iwamura, Koichiro Kato, Hirotaka Ishioka, Yusuke Konta, Koji Sato, Nao Uchida, Noa Koida, Hiroki Sekine, Tetsuhiro Tanaka, Naonori Kumagai, Taku Nakai\",\"doi\":\"10.3164/jcbn.24-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To maintain the oxygen supply, the production of red blood cells (erythrocytes) is promoted under low-oxygen conditions (hypoxia). Oxygen is carried by hemoglobin in erythrocytes, in which the majority of the essential element iron in the body is contained. Because iron metabolism is strictly controlled in a semi-closed recycling system to protect cells from oxidative stress caused by iron, hypoxia-inducible erythropoiesis is closely coordinated by regulatory systems that mobilize stored iron for hemoglobin synthesis. The erythroid growth factor erythropoietin (EPO) is mainly secreted by interstitial fibroblasts in the renal cortex, which are known as renal EPO-producing (REP) cells, and promotes erythropoiesis and iron mobilization. Intriguingly, EPO production is strongly induced by hypoxia through iron-dependent pathways in REP cells. Here, we summarize recent studies on the network mechanisms linking hypoxia-inducible EPO production, erythropoiesis and iron metabolism. Additionally, we introduce disease mechanisms related to disorders in the network mediated by REP cell functions. Furthermore, we propose future studies regarding the application of renal cells derived from the urine of kidney disease patients to investigate the molecular pathology of chronic kidney disease and develop precise and personalized medicine for kidney disease.</p>\",\"PeriodicalId\":15429,\"journal\":{\"name\":\"Journal of Clinical Biochemistry and Nutrition\",\"volume\":\"74 3\",\"pages\":\"179-184\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11111471/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Clinical Biochemistry and Nutrition\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3164/jcbn.24-8\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"NUTRITION & DIETETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Biochemistry and Nutrition","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3164/jcbn.24-8","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/28 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"NUTRITION & DIETETICS","Score":null,"Total":0}
引用次数: 0

摘要

为了维持氧气供应,在低氧(缺氧)条件下会促进红细胞(红血球)的生成。氧气由红细胞中的血红蛋白携带,红细胞中含有人体必需的大部分铁元素。由于铁代谢在一个半封闭的循环系统中受到严格控制,以保护细胞免受铁引起的氧化应激,因此缺氧诱导的红细胞生成是由调控系统密切协调的,该系统调动储存的铁来合成血红蛋白。红细胞生长因子促红细胞生成素(EPO)主要由肾皮质间质成纤维细胞分泌,这些细胞被称为肾EPO生成细胞(REP),可促进红细胞生成和铁动员。耐人寻味的是,缺氧会通过铁依赖性途径强烈诱导 REP 细胞产生 EPO。在此,我们总结了最近关于缺氧诱导 EPO 生成、红细胞生成和铁代谢之间联系的网络机制的研究。此外,我们还介绍了与 REP 细胞功能介导的网络紊乱有关的疾病机制。此外,我们还提出了关于应用肾病患者尿液中提取的肾细胞研究慢性肾病分子病理和开发肾病精准个性化药物的未来研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Crosstalk between oxygen signaling and iron metabolism in renal interstitial fibroblasts.

To maintain the oxygen supply, the production of red blood cells (erythrocytes) is promoted under low-oxygen conditions (hypoxia). Oxygen is carried by hemoglobin in erythrocytes, in which the majority of the essential element iron in the body is contained. Because iron metabolism is strictly controlled in a semi-closed recycling system to protect cells from oxidative stress caused by iron, hypoxia-inducible erythropoiesis is closely coordinated by regulatory systems that mobilize stored iron for hemoglobin synthesis. The erythroid growth factor erythropoietin (EPO) is mainly secreted by interstitial fibroblasts in the renal cortex, which are known as renal EPO-producing (REP) cells, and promotes erythropoiesis and iron mobilization. Intriguingly, EPO production is strongly induced by hypoxia through iron-dependent pathways in REP cells. Here, we summarize recent studies on the network mechanisms linking hypoxia-inducible EPO production, erythropoiesis and iron metabolism. Additionally, we introduce disease mechanisms related to disorders in the network mediated by REP cell functions. Furthermore, we propose future studies regarding the application of renal cells derived from the urine of kidney disease patients to investigate the molecular pathology of chronic kidney disease and develop precise and personalized medicine for kidney disease.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.30
自引率
8.30%
发文量
57
审稿时长
6-12 weeks
期刊介绍: Journal of Clinical Biochemistry and Nutrition (JCBN) is an international, interdisciplinary publication encompassing chemical, biochemical, physiological, pathological, toxicological and medical approaches to research on lipid peroxidation, free radicals, oxidative stress and nutrition. The Journal welcomes original contributions dealing with all aspects of clinical biochemistry and clinical nutrition including both in vitro and in vivo studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信