{"title":"以分子尺度理解电化学界面的原位和非原位方法","authors":"Yasuyuki Yokota","doi":"10.35848/1347-4065/ad455d","DOIUrl":null,"url":null,"abstract":"In recent years, electrochemical devices have become increasingly important, and atomic- and molecular-scale understanding of the electronic and ionic transfers and chemical reactions at the electrode/electrolyte interface is required. While electrochemical scanning tunneling microscopy (EC-STM) has long enabled atomic-resolution observations in real space, it is difficult to identify reaction products and evaluate their electronic states at the interface in the electrochemical environment because of various limitations imposed by the presence of electrolyte solutions in the measurement. In this perspective review, we present our recent progresses with in situ (EC-STM combined with near-field spectroscopy) and ex situ (precise measurements in ultrahigh vacuum after electrode emersion) experiments for elucidating the microscopic properties of the electrochemical interfaces. Current issues and future perspective of both techniques are also discussed in detail.","PeriodicalId":14741,"journal":{"name":"Japanese Journal of Applied Physics","volume":"56 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In situ and ex situ approaches for molecular scale understanding of electrochemical interfaces\",\"authors\":\"Yasuyuki Yokota\",\"doi\":\"10.35848/1347-4065/ad455d\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, electrochemical devices have become increasingly important, and atomic- and molecular-scale understanding of the electronic and ionic transfers and chemical reactions at the electrode/electrolyte interface is required. While electrochemical scanning tunneling microscopy (EC-STM) has long enabled atomic-resolution observations in real space, it is difficult to identify reaction products and evaluate their electronic states at the interface in the electrochemical environment because of various limitations imposed by the presence of electrolyte solutions in the measurement. In this perspective review, we present our recent progresses with in situ (EC-STM combined with near-field spectroscopy) and ex situ (precise measurements in ultrahigh vacuum after electrode emersion) experiments for elucidating the microscopic properties of the electrochemical interfaces. Current issues and future perspective of both techniques are also discussed in detail.\",\"PeriodicalId\":14741,\"journal\":{\"name\":\"Japanese Journal of Applied Physics\",\"volume\":\"56 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Japanese Journal of Applied Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.35848/1347-4065/ad455d\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Japanese Journal of Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.35848/1347-4065/ad455d","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
In situ and ex situ approaches for molecular scale understanding of electrochemical interfaces
In recent years, electrochemical devices have become increasingly important, and atomic- and molecular-scale understanding of the electronic and ionic transfers and chemical reactions at the electrode/electrolyte interface is required. While electrochemical scanning tunneling microscopy (EC-STM) has long enabled atomic-resolution observations in real space, it is difficult to identify reaction products and evaluate their electronic states at the interface in the electrochemical environment because of various limitations imposed by the presence of electrolyte solutions in the measurement. In this perspective review, we present our recent progresses with in situ (EC-STM combined with near-field spectroscopy) and ex situ (precise measurements in ultrahigh vacuum after electrode emersion) experiments for elucidating the microscopic properties of the electrochemical interfaces. Current issues and future perspective of both techniques are also discussed in detail.
期刊介绍:
The Japanese Journal of Applied Physics (JJAP) is an international journal for the advancement and dissemination of knowledge in all fields of applied physics. JJAP is a sister journal of the Applied Physics Express (APEX) and is published by IOP Publishing Ltd on behalf of the Japan Society of Applied Physics (JSAP).
JJAP publishes articles that significantly contribute to the advancements in the applications of physical principles as well as in the understanding of physics in view of particular applications in mind. Subjects covered by JJAP include the following fields:
• Semiconductors, dielectrics, and organic materials
• Photonics, quantum electronics, optics, and spectroscopy
• Spintronics, superconductivity, and strongly correlated materials
• Device physics including quantum information processing
• Physics-based circuits and systems
• Nanoscale science and technology
• Crystal growth, surfaces, interfaces, thin films, and bulk materials
• Plasmas, applied atomic and molecular physics, and applied nuclear physics
• Device processing, fabrication and measurement technologies, and instrumentation
• Cross-disciplinary areas such as bioelectronics/photonics, biosensing, environmental/energy technologies, and MEMS