利用改性硫醇配体定制具有光致发光特性的超小金纳米团簇:计算和实验证明

IF 2.7 4区 材料科学 Q3 CHEMISTRY, PHYSICAL
Anurag M. Chahande, Ashakiran Maibam, Sailaja Krishnamurty, R. Nandini Devi
{"title":"利用改性硫醇配体定制具有光致发光特性的超小金纳米团簇:计算和实验证明","authors":"Anurag M. Chahande, Ashakiran Maibam, Sailaja Krishnamurty, R. Nandini Devi","doi":"10.1002/ppsc.202400011","DOIUrl":null,"url":null,"abstract":"Au nanoclusters with tailored photoluminescence can be obtained through controlled nanoparticle ligand interface chemistry. The present work reports molecular gold nanoclusters with tuneable photoluminescence emission from 600 to 700 nm using N,N′,N″‐trialkyl (11‐mercaptoundecyl)ammonium chloride ligands as capping‐agents. The tunability within red spectral region is regulated through specific interface chemistry between gold nanoclusters of molecular range and functional groups of the quaternary ammonium head over N,N′,N″‐trialkyl(11‐mercaptoundecyl)ammonium chloride. Combined understanding obtained from the spectroscopy, microscopy, and density functional theory studies demonstrate that the functional group specific electronic interactions at the interfaces steer the emission characteristics of “molecular” Au nanoparticles. The study clearly identifies that bulkier functional groups, i.e., triethyl, tripropyl, tributyl, and dimethyl benzene over N<jats:sup>+</jats:sup> (of thiol ligand) through their steric effects minimize the particle size giving rise to tunable photoluminescence emission in red spectral region. However, the red shift seen in the emission Au nanoclusters with N‐(11‐mercaptoundecyl)‐N,N′‐dimethylbenzenammonium chloride ligand in contradiction to particle size effect is computationally proved to be due to the delocalization of electron density from benzene aromatic ring to N<jats:sup>+</jats:sup> of ammonium head leading to a reduction in the HOMO‐LUMO energy gap.","PeriodicalId":19903,"journal":{"name":"Particle & Particle Systems Characterization","volume":"16 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultra‐Small Au Nanoclusters with Tailored Photoluminescence Properties using Modified Thiol Ligands: A Computational and Experimental Demonstration\",\"authors\":\"Anurag M. Chahande, Ashakiran Maibam, Sailaja Krishnamurty, R. Nandini Devi\",\"doi\":\"10.1002/ppsc.202400011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Au nanoclusters with tailored photoluminescence can be obtained through controlled nanoparticle ligand interface chemistry. The present work reports molecular gold nanoclusters with tuneable photoluminescence emission from 600 to 700 nm using N,N′,N″‐trialkyl (11‐mercaptoundecyl)ammonium chloride ligands as capping‐agents. The tunability within red spectral region is regulated through specific interface chemistry between gold nanoclusters of molecular range and functional groups of the quaternary ammonium head over N,N′,N″‐trialkyl(11‐mercaptoundecyl)ammonium chloride. Combined understanding obtained from the spectroscopy, microscopy, and density functional theory studies demonstrate that the functional group specific electronic interactions at the interfaces steer the emission characteristics of “molecular” Au nanoparticles. The study clearly identifies that bulkier functional groups, i.e., triethyl, tripropyl, tributyl, and dimethyl benzene over N<jats:sup>+</jats:sup> (of thiol ligand) through their steric effects minimize the particle size giving rise to tunable photoluminescence emission in red spectral region. However, the red shift seen in the emission Au nanoclusters with N‐(11‐mercaptoundecyl)‐N,N′‐dimethylbenzenammonium chloride ligand in contradiction to particle size effect is computationally proved to be due to the delocalization of electron density from benzene aromatic ring to N<jats:sup>+</jats:sup> of ammonium head leading to a reduction in the HOMO‐LUMO energy gap.\",\"PeriodicalId\":19903,\"journal\":{\"name\":\"Particle & Particle Systems Characterization\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Particle & Particle Systems Characterization\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/ppsc.202400011\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particle & Particle Systems Characterization","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/ppsc.202400011","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

通过控制纳米粒子配体界面化学,可以获得具有定制光致发光的金纳米团簇。本研究以 N,N′,N″-三烷基(11-巯基十烷基)氯化铵配体为封端剂,报道了具有 600 至 700 纳米波长可调光致发光的分子金纳米团簇。通过分子范围的金纳米团簇与 N,N′,N″-三烷基(11-巯基)氯化铵上的季铵头官能团之间特定的界面化学反应,调节了红色光谱区域内的可调谐性。从光谱学、显微镜和密度泛函理论研究中获得的综合认识表明,界面上官能团特定的电子相互作用引导着 "分子 "金纳米粒子的发射特性。研究清楚地表明,体积较大的官能团,即三乙基、三丙基、三丁基和二甲基苯,在 N+(硫醇配体的 N+)上通过其立体效应使颗粒尺寸最小化,从而在红色光谱区域产生可调的光致发光发射。然而,计算证明,与粒径效应相反的是,使用 N-(11-巯基十四烷基)-N,N′-二甲基苯氯化铵配体的金纳米团簇的发射红移是由于电子密度从苯芳香环分散到铵头的 N+,从而导致 HOMO-LUMO 能隙减小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ultra‐Small Au Nanoclusters with Tailored Photoluminescence Properties using Modified Thiol Ligands: A Computational and Experimental Demonstration
Au nanoclusters with tailored photoluminescence can be obtained through controlled nanoparticle ligand interface chemistry. The present work reports molecular gold nanoclusters with tuneable photoluminescence emission from 600 to 700 nm using N,N′,N″‐trialkyl (11‐mercaptoundecyl)ammonium chloride ligands as capping‐agents. The tunability within red spectral region is regulated through specific interface chemistry between gold nanoclusters of molecular range and functional groups of the quaternary ammonium head over N,N′,N″‐trialkyl(11‐mercaptoundecyl)ammonium chloride. Combined understanding obtained from the spectroscopy, microscopy, and density functional theory studies demonstrate that the functional group specific electronic interactions at the interfaces steer the emission characteristics of “molecular” Au nanoparticles. The study clearly identifies that bulkier functional groups, i.e., triethyl, tripropyl, tributyl, and dimethyl benzene over N+ (of thiol ligand) through their steric effects minimize the particle size giving rise to tunable photoluminescence emission in red spectral region. However, the red shift seen in the emission Au nanoclusters with N‐(11‐mercaptoundecyl)‐N,N′‐dimethylbenzenammonium chloride ligand in contradiction to particle size effect is computationally proved to be due to the delocalization of electron density from benzene aromatic ring to N+ of ammonium head leading to a reduction in the HOMO‐LUMO energy gap.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Particle & Particle Systems Characterization
Particle & Particle Systems Characterization 工程技术-材料科学:表征与测试
CiteScore
5.50
自引率
0.00%
发文量
114
审稿时长
3.0 months
期刊介绍: Particle & Particle Systems Characterization is an international, peer-reviewed, interdisciplinary journal focusing on all aspects of particle research. The journal joined the Advanced Materials family of journals in 2013. Particle has an impact factor of 4.194 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)). Topics covered include the synthesis, characterization, and application of particles in a variety of systems and devices. Particle covers nanotubes, fullerenes, micelles and alloy clusters, organic and inorganic materials, polymers, quantum dots, 2D materials, proteins, and other molecular biological systems. Particle Systems include those in biomedicine, catalysis, energy-storage materials, environmental science, micro/nano-electromechanical systems, micro/nano-fluidics, molecular electronics, photonics, sensing, and others. Characterization methods include microscopy, spectroscopy, electrochemical, diffraction, magnetic, and scattering techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信