用于精确最大流量计算的多项式大小 ReLU 神经网络

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Christoph Hertrich, Leon Sering
{"title":"用于精确最大流量计算的多项式大小 ReLU 神经网络","authors":"Christoph Hertrich, Leon Sering","doi":"10.1007/s10107-024-02096-x","DOIUrl":null,"url":null,"abstract":"<p>This paper studies the expressive power of artificial neural networks with rectified linear units. In order to study them as a model of <i>real-valued</i> computation, we introduce the concept of <i>Max-Affine Arithmetic Programs</i> and show equivalence between them and neural networks concerning natural complexity measures. We then use this result to show that two fundamental combinatorial optimization problems can be solved with polynomial-size neural networks. First, we show that for any undirected graph with <i>n</i> nodes, there is a neural network (with fixed weights and biases) of size <span>\\(\\mathcal {O}(n^3)\\)</span> that takes the edge weights as input and computes the value of a minimum spanning tree of the graph. Second, we show that for any directed graph with <i>n</i> nodes and <i>m</i> arcs, there is a neural network of size <span>\\(\\mathcal {O}(m^2n^2)\\)</span> that takes the arc capacities as input and computes a maximum flow. Our results imply that these two problems can be solved with strongly polynomial time algorithms that solely use affine transformations and maxima computations, but no comparison-based branchings.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ReLU neural networks of polynomial size for exact maximum flow computation\",\"authors\":\"Christoph Hertrich, Leon Sering\",\"doi\":\"10.1007/s10107-024-02096-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper studies the expressive power of artificial neural networks with rectified linear units. In order to study them as a model of <i>real-valued</i> computation, we introduce the concept of <i>Max-Affine Arithmetic Programs</i> and show equivalence between them and neural networks concerning natural complexity measures. We then use this result to show that two fundamental combinatorial optimization problems can be solved with polynomial-size neural networks. First, we show that for any undirected graph with <i>n</i> nodes, there is a neural network (with fixed weights and biases) of size <span>\\\\(\\\\mathcal {O}(n^3)\\\\)</span> that takes the edge weights as input and computes the value of a minimum spanning tree of the graph. Second, we show that for any directed graph with <i>n</i> nodes and <i>m</i> arcs, there is a neural network of size <span>\\\\(\\\\mathcal {O}(m^2n^2)\\\\)</span> that takes the arc capacities as input and computes a maximum flow. Our results imply that these two problems can be solved with strongly polynomial time algorithms that solely use affine transformations and maxima computations, but no comparison-based branchings.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10107-024-02096-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10107-024-02096-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了具有整流线性单元的人工神经网络的表达能力。为了将它们作为实值计算模型进行研究,我们引入了最大阿芬算术程序的概念,并证明了它们与神经网络在自然复杂性度量方面的等价性。然后,我们利用这一结果表明,两个基本的组合优化问题可以用多项式大小的神经网络来解决。首先,我们证明了对于任何有 n 个节点的无向图,都存在一个大小为 \(\mathcal {O}(n^3)\) 的神经网络(具有固定权重和偏置),它将边的权重作为输入,并计算图的最小生成树的值。其次,我们证明了对于任何有 n 个节点和 m 个弧的有向图,存在一个大小为 \(\mathcal {O}(m^2n^2)\) 的神经网络,它将弧的容量作为输入,并计算出最大流量。我们的结果意味着这两个问题可以用强多项式时间算法来解决,这种算法只使用仿射变换和最大值计算,而不使用基于比较的分支。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

ReLU neural networks of polynomial size for exact maximum flow computation

ReLU neural networks of polynomial size for exact maximum flow computation

This paper studies the expressive power of artificial neural networks with rectified linear units. In order to study them as a model of real-valued computation, we introduce the concept of Max-Affine Arithmetic Programs and show equivalence between them and neural networks concerning natural complexity measures. We then use this result to show that two fundamental combinatorial optimization problems can be solved with polynomial-size neural networks. First, we show that for any undirected graph with n nodes, there is a neural network (with fixed weights and biases) of size \(\mathcal {O}(n^3)\) that takes the edge weights as input and computes the value of a minimum spanning tree of the graph. Second, we show that for any directed graph with n nodes and m arcs, there is a neural network of size \(\mathcal {O}(m^2n^2)\) that takes the arc capacities as input and computes a maximum flow. Our results imply that these two problems can be solved with strongly polynomial time algorithms that solely use affine transformations and maxima computations, but no comparison-based branchings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信