乌尔里希模块的张量积和两个同调猜想的解

IF 0.8 3区 数学 Q2 MATHEMATICS
Cleto Miranda-Neto, Thyago Souza
{"title":"乌尔里希模块的张量积和两个同调猜想的解","authors":"Cleto Miranda-Neto, Thyago Souza","doi":"10.1090/proc/16838","DOIUrl":null,"url":null,"abstract":"<p>We address the problem of when the tensor product of two finitely generated modules over a Cohen-Macaulay local ring is Ulrich in the generalized sense of Goto et al., and in particular in the original sense from the 80’s. As applications, besides freeness criteria for modules, characterizations of complete intersections, and an Ulrich-based approach to the long-standing Berger’s conjecture, we give simple proofs that two celebrated homological conjectures, namely the Huneke-Wiegand and the Auslander-Reiten problems, are true for the class of Ulrich modules.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tensor products and solutions to two homological conjectures for Ulrich modules\",\"authors\":\"Cleto Miranda-Neto, Thyago Souza\",\"doi\":\"10.1090/proc/16838\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We address the problem of when the tensor product of two finitely generated modules over a Cohen-Macaulay local ring is Ulrich in the generalized sense of Goto et al., and in particular in the original sense from the 80’s. As applications, besides freeness criteria for modules, characterizations of complete intersections, and an Ulrich-based approach to the long-standing Berger’s conjecture, we give simple proofs that two celebrated homological conjectures, namely the Huneke-Wiegand and the Auslander-Reiten problems, are true for the class of Ulrich modules.</p>\",\"PeriodicalId\":20696,\"journal\":{\"name\":\"Proceedings of the American Mathematical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/proc/16838\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/proc/16838","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们探讨了科恩-麦考莱局部环上两个有限生成模块的张量积何时是后藤等人广义上的乌尔里希,特别是 80 年代的原初意义上的乌尔里希。作为应用,除了模块的自由性标准、完全交集的特征以及基于乌尔里希的方法来解决长期存在的伯杰猜想之外,我们还给出了两个著名的同调猜想(即胡内克-维根问题和奥斯兰德-雷滕问题)在乌尔里希模块类中为真的简单证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tensor products and solutions to two homological conjectures for Ulrich modules

We address the problem of when the tensor product of two finitely generated modules over a Cohen-Macaulay local ring is Ulrich in the generalized sense of Goto et al., and in particular in the original sense from the 80’s. As applications, besides freeness criteria for modules, characterizations of complete intersections, and an Ulrich-based approach to the long-standing Berger’s conjecture, we give simple proofs that two celebrated homological conjectures, namely the Huneke-Wiegand and the Auslander-Reiten problems, are true for the class of Ulrich modules.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
207
审稿时长
2-4 weeks
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to shorter research articles (not to exceed 15 printed pages) in all areas of pure and applied mathematics. To be published in the Proceedings, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Longer papers may be submitted to the Transactions of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信