{"title":"利用高灵敏度氧化石墨烯和还原氧化石墨烯(GO/r-GO)荧光传感器推进水生食品安全检测工作","authors":"Mei-Xi Chen, Jun-Hu Cheng, Ji Ma, Da-Wen Sun","doi":"10.1007/s12393-024-09375-5","DOIUrl":null,"url":null,"abstract":"<div><p>With the increasing demand for aquatic products, the requirement for the safety detection of aquatic products is also increasing. In the past decade, graphene oxide (GO) and reduced graphene oxide (r-GO) have become hot topics in many fields due to their special physical and chemical properties. With their excellent conductivity, a variety of electrochemical sensors have been developed in the fields of biology, food and chemistry. However, the unique optical properties of GO/r-GO have not yet been widely utilized. With the deepening of research, the fluorescence quenching performance of GO/r-GO has been proven to have excellent potential for building fluorescent sensors, and GO/r-GO fluorescent sensors have thus become an inevitable trend in sensor development. This review summarizes the main preparation methods of GO/r-GO and the principles of GO/r-GO fluorescent sensors comprehensively. Additionally, recent advances in utilizing GO/r-GO fluorescent sensors to detect aquatic food are discussed, including the application for the detection of harmful chemicals, microorganisms, and endogenous substances in aquatic products, such as pesticides, antibiotics and heavy metals. It is hoped that this review will help accelerate the progress in the field of analysis, and promote the establishment of an aquatic food supervision system.</p></div>","PeriodicalId":565,"journal":{"name":"Food Engineering Reviews","volume":"16 4","pages":"618 - 634"},"PeriodicalIF":5.3000,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12393-024-09375-5.pdf","citationCount":"0","resultStr":"{\"title\":\"Advancing Aquatic Food Safety Detection Using Highly Sensitive Graphene Oxide and Reduced Graphene Oxide (GO/r-GO) Fluorescent Sensors\",\"authors\":\"Mei-Xi Chen, Jun-Hu Cheng, Ji Ma, Da-Wen Sun\",\"doi\":\"10.1007/s12393-024-09375-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>With the increasing demand for aquatic products, the requirement for the safety detection of aquatic products is also increasing. In the past decade, graphene oxide (GO) and reduced graphene oxide (r-GO) have become hot topics in many fields due to their special physical and chemical properties. With their excellent conductivity, a variety of electrochemical sensors have been developed in the fields of biology, food and chemistry. However, the unique optical properties of GO/r-GO have not yet been widely utilized. With the deepening of research, the fluorescence quenching performance of GO/r-GO has been proven to have excellent potential for building fluorescent sensors, and GO/r-GO fluorescent sensors have thus become an inevitable trend in sensor development. This review summarizes the main preparation methods of GO/r-GO and the principles of GO/r-GO fluorescent sensors comprehensively. Additionally, recent advances in utilizing GO/r-GO fluorescent sensors to detect aquatic food are discussed, including the application for the detection of harmful chemicals, microorganisms, and endogenous substances in aquatic products, such as pesticides, antibiotics and heavy metals. It is hoped that this review will help accelerate the progress in the field of analysis, and promote the establishment of an aquatic food supervision system.</p></div>\",\"PeriodicalId\":565,\"journal\":{\"name\":\"Food Engineering Reviews\",\"volume\":\"16 4\",\"pages\":\"618 - 634\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s12393-024-09375-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Engineering Reviews\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12393-024-09375-5\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Engineering Reviews","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s12393-024-09375-5","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Advancing Aquatic Food Safety Detection Using Highly Sensitive Graphene Oxide and Reduced Graphene Oxide (GO/r-GO) Fluorescent Sensors
With the increasing demand for aquatic products, the requirement for the safety detection of aquatic products is also increasing. In the past decade, graphene oxide (GO) and reduced graphene oxide (r-GO) have become hot topics in many fields due to their special physical and chemical properties. With their excellent conductivity, a variety of electrochemical sensors have been developed in the fields of biology, food and chemistry. However, the unique optical properties of GO/r-GO have not yet been widely utilized. With the deepening of research, the fluorescence quenching performance of GO/r-GO has been proven to have excellent potential for building fluorescent sensors, and GO/r-GO fluorescent sensors have thus become an inevitable trend in sensor development. This review summarizes the main preparation methods of GO/r-GO and the principles of GO/r-GO fluorescent sensors comprehensively. Additionally, recent advances in utilizing GO/r-GO fluorescent sensors to detect aquatic food are discussed, including the application for the detection of harmful chemicals, microorganisms, and endogenous substances in aquatic products, such as pesticides, antibiotics and heavy metals. It is hoped that this review will help accelerate the progress in the field of analysis, and promote the establishment of an aquatic food supervision system.
期刊介绍:
Food Engineering Reviews publishes articles encompassing all engineering aspects of today’s scientific food research. The journal focuses on both classic and modern food engineering topics, exploring essential factors such as the health, nutritional, and environmental aspects of food processing. Trends that will drive the discipline over time, from the lab to industrial implementation, are identified and discussed. The scope of topics addressed is broad, including transport phenomena in food processing; food process engineering; physical properties of foods; food nano-science and nano-engineering; food equipment design; food plant design; modeling food processes; microbial inactivation kinetics; preservation technologies; engineering aspects of food packaging; shelf-life, storage and distribution of foods; instrumentation, control and automation in food processing; food engineering, health and nutrition; energy and economic considerations in food engineering; sustainability; and food engineering education.