PyTAG:多代理强化学习的桌面游戏

IF 1.7 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Martin Balla;George E. M. Long;James Goodman;Raluca D. Gaina;Diego Perez-Liebana
{"title":"PyTAG:多代理强化学习的桌面游戏","authors":"Martin Balla;George E. M. Long;James Goodman;Raluca D. Gaina;Diego Perez-Liebana","doi":"10.1109/TG.2024.3404133","DOIUrl":null,"url":null,"abstract":"Modern Tabletop Games present various interesting challenges for multiagent reinforcement learning. In this article, we introduce PyTAG, a new framework that supports interacting with a large collection of games implemented in the Tabletop Games framework. In this work, we highlight the challenges tabletop games provide, from a game-playing agent perspective, along with the opportunities they provide for future research. In addition, we highlight the technical challenges that involve training reinforcement learning agents on these games. To explore the multiagent setting provided by PyTAG, we train the popular proximal policy optimization reinforcement learning algorithm using self-play on a subset of games and evaluate the trained policies against some simple agents and Monte Carlo tree search implemented in the Tabletop Games framework.","PeriodicalId":55977,"journal":{"name":"IEEE Transactions on Games","volume":"16 4","pages":"993-1002"},"PeriodicalIF":1.7000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PyTAG: Tabletop Games for Multiagent Reinforcement Learning\",\"authors\":\"Martin Balla;George E. M. Long;James Goodman;Raluca D. Gaina;Diego Perez-Liebana\",\"doi\":\"10.1109/TG.2024.3404133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern Tabletop Games present various interesting challenges for multiagent reinforcement learning. In this article, we introduce PyTAG, a new framework that supports interacting with a large collection of games implemented in the Tabletop Games framework. In this work, we highlight the challenges tabletop games provide, from a game-playing agent perspective, along with the opportunities they provide for future research. In addition, we highlight the technical challenges that involve training reinforcement learning agents on these games. To explore the multiagent setting provided by PyTAG, we train the popular proximal policy optimization reinforcement learning algorithm using self-play on a subset of games and evaluate the trained policies against some simple agents and Monte Carlo tree search implemented in the Tabletop Games framework.\",\"PeriodicalId\":55977,\"journal\":{\"name\":\"IEEE Transactions on Games\",\"volume\":\"16 4\",\"pages\":\"993-1002\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Games\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10536623/\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Games","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10536623/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

现代桌面游戏为多智能体强化学习提出了各种有趣的挑战。在本文中,我们将介绍PyTAG,这是一个支持与Tabletop games框架中实现的大量游戏进行交互的新框架。在这项工作中,我们从游戏代理的角度强调了桌面游戏提供的挑战,以及它们为未来研究提供的机会。此外,我们强调了涉及在这些游戏上训练强化学习代理的技术挑战。为了探索PyTAG提供的多智能体设置,我们在一个游戏子集上使用自玩来训练流行的近端策略优化强化学习算法,并根据一些简单的智能体和在桌面游戏框架中实现的蒙特卡罗树搜索来评估训练好的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PyTAG: Tabletop Games for Multiagent Reinforcement Learning
Modern Tabletop Games present various interesting challenges for multiagent reinforcement learning. In this article, we introduce PyTAG, a new framework that supports interacting with a large collection of games implemented in the Tabletop Games framework. In this work, we highlight the challenges tabletop games provide, from a game-playing agent perspective, along with the opportunities they provide for future research. In addition, we highlight the technical challenges that involve training reinforcement learning agents on these games. To explore the multiagent setting provided by PyTAG, we train the popular proximal policy optimization reinforcement learning algorithm using self-play on a subset of games and evaluate the trained policies against some simple agents and Monte Carlo tree search implemented in the Tabletop Games framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Games
IEEE Transactions on Games Engineering-Electrical and Electronic Engineering
CiteScore
4.60
自引率
8.70%
发文量
87
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信