PyTAG:多代理强化学习的桌面游戏

IF 1.7 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Martin Balla, George E.M. Long, James Goodman, Raluca D. Gaina, Diego Perez-Liebana
{"title":"PyTAG:多代理强化学习的桌面游戏","authors":"Martin Balla, George E.M. Long, James Goodman, Raluca D. Gaina, Diego Perez-Liebana","doi":"10.1109/tg.2024.3404133","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":55977,"journal":{"name":"IEEE Transactions on Games","volume":"46 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PyTAG: Tabletop Games for Multi-Agent Reinforcement Learning\",\"authors\":\"Martin Balla, George E.M. Long, James Goodman, Raluca D. Gaina, Diego Perez-Liebana\",\"doi\":\"10.1109/tg.2024.3404133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\",\"PeriodicalId\":55977,\"journal\":{\"name\":\"IEEE Transactions on Games\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Games\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/tg.2024.3404133\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Games","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/tg.2024.3404133","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
PyTAG: Tabletop Games for Multi-Agent Reinforcement Learning
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Games
IEEE Transactions on Games Engineering-Electrical and Electronic Engineering
CiteScore
4.60
自引率
8.70%
发文量
87
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信