将石墨烯上的超细合金纳米晶体作为杂化基质用于长寿命和高倍率硅阳极的研究

IF 2.5 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Junwen Zhu, Xiaoyun Li, Jingyi Chen, Cen Wang, Zhe Li, Xin Cao, Yiming Zhou, Yawen Tang and Ping Wu
{"title":"将石墨烯上的超细合金纳米晶体作为杂化基质用于长寿命和高倍率硅阳极的研究","authors":"Junwen Zhu, Xiaoyun Li, Jingyi Chen, Cen Wang, Zhe Li, Xin Cao, Yiming Zhou, Yawen Tang and Ping Wu","doi":"10.1039/D4NJ01660B","DOIUrl":null,"url":null,"abstract":"<p >In silicon-based hybrid anodes, the uniform hybridization of silicon with conducting/buffering matrices is very critical in achieving desirable lithium storage performance. Herein, a cyanosol-derived electrostatic assembly and pyrolysis route has been developed to construct homogeneous silicon/metal/carbon (Si/M/C) ternary materials. Specifically, Si nanoparticles surrounded by ultrafine FeCo alloy are uniformly anchored on graphene (G), yielding a Si/FeCo/G nanohybrid. The incorporation of M/C dual matrices, with ultrafine alloy nanocrystals evenly distributed on graphene, into silicon could be responsible for the improved structural stability and charge-transport capability of the ternary anode. As a result, the Si/FeCo/G nanohybrid manifests good cycling stability (1426 mA h g<small><sup>−1</sup></small> after 100 cycles at 0.5 A g<small><sup>−1</sup></small>) and high rate performance (1266 and 1118 mA h g<small><sup>−1</sup></small> at 5 and 10 A g<small><sup>−1</sup></small>, respectively).</p>","PeriodicalId":95,"journal":{"name":"New Journal of Chemistry","volume":" 25","pages":" 11267-11272"},"PeriodicalIF":2.5000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cyanosol-enabled ultrafine alloy nanocrystals on graphene as a hybridization matrix for long-life and high-rate silicon anodes†\",\"authors\":\"Junwen Zhu, Xiaoyun Li, Jingyi Chen, Cen Wang, Zhe Li, Xin Cao, Yiming Zhou, Yawen Tang and Ping Wu\",\"doi\":\"10.1039/D4NJ01660B\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >In silicon-based hybrid anodes, the uniform hybridization of silicon with conducting/buffering matrices is very critical in achieving desirable lithium storage performance. Herein, a cyanosol-derived electrostatic assembly and pyrolysis route has been developed to construct homogeneous silicon/metal/carbon (Si/M/C) ternary materials. Specifically, Si nanoparticles surrounded by ultrafine FeCo alloy are uniformly anchored on graphene (G), yielding a Si/FeCo/G nanohybrid. The incorporation of M/C dual matrices, with ultrafine alloy nanocrystals evenly distributed on graphene, into silicon could be responsible for the improved structural stability and charge-transport capability of the ternary anode. As a result, the Si/FeCo/G nanohybrid manifests good cycling stability (1426 mA h g<small><sup>−1</sup></small> after 100 cycles at 0.5 A g<small><sup>−1</sup></small>) and high rate performance (1266 and 1118 mA h g<small><sup>−1</sup></small> at 5 and 10 A g<small><sup>−1</sup></small>, respectively).</p>\",\"PeriodicalId\":95,\"journal\":{\"name\":\"New Journal of Chemistry\",\"volume\":\" 25\",\"pages\":\" 11267-11272\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Journal of Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/nj/d4nj01660b\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/nj/d4nj01660b","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在硅基混合阳极中,硅与导电/缓冲基质的均匀杂化对于实现理想的锂存储性能至关重要。在此,我们开发了一种源自氰醇的静电组装和热解路线,用于构建均匀的硅/金属/碳(Si/M/C)三元材料。具体地说,硅纳米颗粒被超细铁钴合金均匀地锚定在石墨烯(G)上,形成硅/铁钴/碳纳米杂化物。将超细合金纳米晶体均匀分布在石墨烯上的 M/C 双基质与硅结合在一起,可能是提高三元正极结构稳定性和电荷传输能力的原因。因此,Si/FeCo/G 纳米混合电池具有良好的循环稳定性(在 0.5 A g-1 下循环 100 次后,电流为 1426 mA h g-1)和高速率性能(在 5 A g-1 和 10 A g-1 下,电流分别为 1266 mA h g-1 和 1118 mA h g-1)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Cyanosol-enabled ultrafine alloy nanocrystals on graphene as a hybridization matrix for long-life and high-rate silicon anodes†

Cyanosol-enabled ultrafine alloy nanocrystals on graphene as a hybridization matrix for long-life and high-rate silicon anodes†

In silicon-based hybrid anodes, the uniform hybridization of silicon with conducting/buffering matrices is very critical in achieving desirable lithium storage performance. Herein, a cyanosol-derived electrostatic assembly and pyrolysis route has been developed to construct homogeneous silicon/metal/carbon (Si/M/C) ternary materials. Specifically, Si nanoparticles surrounded by ultrafine FeCo alloy are uniformly anchored on graphene (G), yielding a Si/FeCo/G nanohybrid. The incorporation of M/C dual matrices, with ultrafine alloy nanocrystals evenly distributed on graphene, into silicon could be responsible for the improved structural stability and charge-transport capability of the ternary anode. As a result, the Si/FeCo/G nanohybrid manifests good cycling stability (1426 mA h g−1 after 100 cycles at 0.5 A g−1) and high rate performance (1266 and 1118 mA h g−1 at 5 and 10 A g−1, respectively).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
New Journal of Chemistry
New Journal of Chemistry 化学-化学综合
CiteScore
5.30
自引率
6.10%
发文量
1832
审稿时长
2 months
期刊介绍: A journal for new directions in chemistry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信