等离子体增强化学气相沉积、低压化学气相沉积和金属有机化学气相沉积在金刚石和氮化镓基集成器件中生长的氮化硅介电层的比较

IF 1.5 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER
Haolun Sun, Mei Wu, Ping Wang, Chao Yuan, Guoliang Ma, Ling Yang, Xiaohua Ma, Yue Hao
{"title":"等离子体增强化学气相沉积、低压化学气相沉积和金属有机化学气相沉积在金刚石和氮化镓基集成器件中生长的氮化硅介电层的比较","authors":"Haolun Sun, Mei Wu, Ping Wang, Chao Yuan, Guoliang Ma, Ling Yang, Xiaohua Ma, Yue Hao","doi":"10.1002/pssb.202400052","DOIUrl":null,"url":null,"abstract":"To address the issue of heat dissipation caused by the high output power density of gallium nitride (GaN) devices, using diamond‐integrated devices is an effective solution. Recent studies have suggested that incorporating a dielectric layer, such as silicon nitride (SiN<jats:sub><jats:italic>x</jats:italic></jats:sub>), between diamond and GaN can improve adhesion while also reducing thermal boundary resistance (TBR). In this study, plasma‐enhanced chemical vapor deposition (CVD), low‐pressure CVD, and metal‐organic CVD (MOCVD) techniques are utilized to grow the SiN<jats:sub><jats:italic>x</jats:italic></jats:sub> layer. The interface behavior of diamond/SiN<jats:sub><jats:italic>x</jats:italic></jats:sub>/GaN is analyzed through scanning electron microscopy, transmission electron microscopy (TEM), scanning TEM, and energy‐dispersive X‐ray spectroscopy, while time‐domain thermoreflectance measurement is used to characterize thermal properties. After analyzing the impact of the growth dielectric layer on the interface thermal resistance of the three growth modes, it is concluded that the dielectric layer produced by the MOCVD technique exhibits a smoother surface and lower TBR compared to the other two methods. Therefore, the use of the MOCVD technique is recommended to achieve optimal thermal performance in diamond/SiN<jats:sub><jats:italic>x</jats:italic></jats:sub>/GaN systems.","PeriodicalId":20406,"journal":{"name":"Physica Status Solidi B-basic Solid State Physics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of SiNx Dielectric Layer Grown by Plasma‐Enhanced Chemical Vapor Deposition, Low‐Pressure Chemical Vapor Deposition, and Metal‐Organic Chemical Vapor Deposition in Diamond‐ and GaN‐Based Integrated Devices\",\"authors\":\"Haolun Sun, Mei Wu, Ping Wang, Chao Yuan, Guoliang Ma, Ling Yang, Xiaohua Ma, Yue Hao\",\"doi\":\"10.1002/pssb.202400052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To address the issue of heat dissipation caused by the high output power density of gallium nitride (GaN) devices, using diamond‐integrated devices is an effective solution. Recent studies have suggested that incorporating a dielectric layer, such as silicon nitride (SiN<jats:sub><jats:italic>x</jats:italic></jats:sub>), between diamond and GaN can improve adhesion while also reducing thermal boundary resistance (TBR). In this study, plasma‐enhanced chemical vapor deposition (CVD), low‐pressure CVD, and metal‐organic CVD (MOCVD) techniques are utilized to grow the SiN<jats:sub><jats:italic>x</jats:italic></jats:sub> layer. The interface behavior of diamond/SiN<jats:sub><jats:italic>x</jats:italic></jats:sub>/GaN is analyzed through scanning electron microscopy, transmission electron microscopy (TEM), scanning TEM, and energy‐dispersive X‐ray spectroscopy, while time‐domain thermoreflectance measurement is used to characterize thermal properties. After analyzing the impact of the growth dielectric layer on the interface thermal resistance of the three growth modes, it is concluded that the dielectric layer produced by the MOCVD technique exhibits a smoother surface and lower TBR compared to the other two methods. Therefore, the use of the MOCVD technique is recommended to achieve optimal thermal performance in diamond/SiN<jats:sub><jats:italic>x</jats:italic></jats:sub>/GaN systems.\",\"PeriodicalId\":20406,\"journal\":{\"name\":\"Physica Status Solidi B-basic Solid State Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica Status Solidi B-basic Solid State Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1002/pssb.202400052\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Status Solidi B-basic Solid State Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/pssb.202400052","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

为了解决氮化镓(GaN)器件的高输出功率密度引起的散热问题,使用金刚石集成器件是一种有效的解决方案。最近的研究表明,在金刚石和氮化镓之间加入氮化硅(SiNx)等介质层可以提高附着力,同时降低热边界电阻(TBR)。本研究采用等离子体增强化学气相沉积 (CVD)、低压 CVD 和金属有机 CVD (MOCVD) 技术来生长 SiNx 层。通过扫描电子显微镜、透射电子显微镜 (TEM)、扫描 TEM 和能量色散 X 射线光谱分析了金刚石/SiNx/GaN 的界面行为,同时使用时域热反射测量表征了热特性。在分析了生长介质层对三种生长模式的界面热阻的影响后,得出的结论是,与其他两种方法相比,MOCVD 技术产生的介质层表面更光滑,TBR 更低。因此,建议使用 MOCVD 技术来实现金刚石/SiNx/GaN 系统的最佳热性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of SiNx Dielectric Layer Grown by Plasma‐Enhanced Chemical Vapor Deposition, Low‐Pressure Chemical Vapor Deposition, and Metal‐Organic Chemical Vapor Deposition in Diamond‐ and GaN‐Based Integrated Devices
To address the issue of heat dissipation caused by the high output power density of gallium nitride (GaN) devices, using diamond‐integrated devices is an effective solution. Recent studies have suggested that incorporating a dielectric layer, such as silicon nitride (SiNx), between diamond and GaN can improve adhesion while also reducing thermal boundary resistance (TBR). In this study, plasma‐enhanced chemical vapor deposition (CVD), low‐pressure CVD, and metal‐organic CVD (MOCVD) techniques are utilized to grow the SiNx layer. The interface behavior of diamond/SiNx/GaN is analyzed through scanning electron microscopy, transmission electron microscopy (TEM), scanning TEM, and energy‐dispersive X‐ray spectroscopy, while time‐domain thermoreflectance measurement is used to characterize thermal properties. After analyzing the impact of the growth dielectric layer on the interface thermal resistance of the three growth modes, it is concluded that the dielectric layer produced by the MOCVD technique exhibits a smoother surface and lower TBR compared to the other two methods. Therefore, the use of the MOCVD technique is recommended to achieve optimal thermal performance in diamond/SiNx/GaN systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physica Status Solidi B-basic Solid State Physics
Physica Status Solidi B-basic Solid State Physics 物理-物理:凝聚态物理
CiteScore
3.30
自引率
6.20%
发文量
321
审稿时长
2 months
期刊介绍: physica status solidi is devoted to the thorough peer review and the rapid publication of new and important results in all fields of solid state and materials physics, from basic science to applications and devices. Being among the largest and most important international publications, the pss journals publish review articles, letters and original work as well as special issues and conference contributions. physica status solidi b – basic solid state physics is devoted to topics such as theoretical and experimental investigations of the atomistic and electronic structure of solids in general, phase transitions, electronic and optical properties of low-dimensional, nano-scale, strongly correlated, or disordered systems, superconductivity, magnetism, ferroelectricity etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信