Pythia:用于高维环境中状态预测的边缘优先代理

IF 1.7 4区 计算机科学 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Andreas Karatzas;Iraklis Anagnostopoulos
{"title":"Pythia:用于高维环境中状态预测的边缘优先代理","authors":"Andreas Karatzas;Iraklis Anagnostopoulos","doi":"10.1109/LES.2024.3403090","DOIUrl":null,"url":null,"abstract":"Modern deep learning agents usually operate in low-dimensional environments. They process pixel input, do not offer insights into their thought process, and require significant power and computational resources. These characteristics make them inapplicable for embedded devices. In this letter, we present Pythia, an edge-first framework that uses latent imagination to handle complex environments efficiently and envision future agent states. It utilizes a vector quantized variational autoencoder to reduce the high-dimensional features into a low-dimensional space, making it ideal for modern embedded devices. Moreover, Pythia offers human interpretable feedback and scales well with respect to the design space. Pythia surpassed the other state-of-the-art models in prediction accuracy on both intrinsic and extrinsic metrics.","PeriodicalId":56143,"journal":{"name":"IEEE Embedded Systems Letters","volume":"16 4","pages":"473-476"},"PeriodicalIF":1.7000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pythia: An Edge-First Agent for State Prediction in High-Dimensional Environments\",\"authors\":\"Andreas Karatzas;Iraklis Anagnostopoulos\",\"doi\":\"10.1109/LES.2024.3403090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern deep learning agents usually operate in low-dimensional environments. They process pixel input, do not offer insights into their thought process, and require significant power and computational resources. These characteristics make them inapplicable for embedded devices. In this letter, we present Pythia, an edge-first framework that uses latent imagination to handle complex environments efficiently and envision future agent states. It utilizes a vector quantized variational autoencoder to reduce the high-dimensional features into a low-dimensional space, making it ideal for modern embedded devices. Moreover, Pythia offers human interpretable feedback and scales well with respect to the design space. Pythia surpassed the other state-of-the-art models in prediction accuracy on both intrinsic and extrinsic metrics.\",\"PeriodicalId\":56143,\"journal\":{\"name\":\"IEEE Embedded Systems Letters\",\"volume\":\"16 4\",\"pages\":\"473-476\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Embedded Systems Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10535437/\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Embedded Systems Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10535437/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

现代深度学习智能体通常在低维环境中运行。它们处理像素输入,不提供对其思维过程的洞察,并且需要大量的功率和计算资源。这些特性使得它们不适用于嵌入式设备。在这封信中,我们介绍了Pythia,一个边缘优先的框架,它使用潜在的想象力来有效地处理复杂的环境,并设想未来的代理状态。它利用矢量量化变分自编码器将高维特征减少到低维空间,使其成为现代嵌入式设备的理想选择。此外,Pythia提供了人类可解释的反馈,并且在设计空间方面具有良好的扩展性。皮媞亚在内在和外在指标上的预测准确性超过了其他最先进的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pythia: An Edge-First Agent for State Prediction in High-Dimensional Environments
Modern deep learning agents usually operate in low-dimensional environments. They process pixel input, do not offer insights into their thought process, and require significant power and computational resources. These characteristics make them inapplicable for embedded devices. In this letter, we present Pythia, an edge-first framework that uses latent imagination to handle complex environments efficiently and envision future agent states. It utilizes a vector quantized variational autoencoder to reduce the high-dimensional features into a low-dimensional space, making it ideal for modern embedded devices. Moreover, Pythia offers human interpretable feedback and scales well with respect to the design space. Pythia surpassed the other state-of-the-art models in prediction accuracy on both intrinsic and extrinsic metrics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Embedded Systems Letters
IEEE Embedded Systems Letters Engineering-Control and Systems Engineering
CiteScore
3.30
自引率
0.00%
发文量
65
期刊介绍: The IEEE Embedded Systems Letters (ESL), provides a forum for rapid dissemination of latest technical advances in embedded systems and related areas in embedded software. The emphasis is on models, methods, and tools that ensure secure, correct, efficient and robust design of embedded systems and their applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信