后门 DNF

IF 1.1 3区 计算机科学 Q1 BUSINESS, FINANCE
Sebastian Ordyniak , Andre Schidler , Stefan Szeider
{"title":"后门 DNF","authors":"Sebastian Ordyniak ,&nbsp;Andre Schidler ,&nbsp;Stefan Szeider","doi":"10.1016/j.jcss.2024.103547","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce backdoor DNFs, as a tool to measure the theoretical hardness of CNF formulas. Like backdoor sets and backdoor trees, backdoor DNFs are defined relative to a tractable class of CNF formulas. Each conjunctive term of a backdoor DNF defines a partial assignment that moves the input CNF formula into the base class. Backdoor DNFs are more expressive and potentially smaller than their predecessors backdoor sets and backdoor trees. We establish the fixed-parameter tractability of the backdoor DNF detection problem. Our results hold for the fundamental base classes Horn and 2CNF, and their combination. We complement our theoretical findings by an empirical study. Our experiments show that backdoor DNFs provide a significant improvement over their predecessors.</p></div>","PeriodicalId":50224,"journal":{"name":"Journal of Computer and System Sciences","volume":"144 ","pages":"Article 103547"},"PeriodicalIF":1.1000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022000024000424/pdfft?md5=28e392df06776d3baaabe0cd651c38e8&pid=1-s2.0-S0022000024000424-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Backdoor DNFs\",\"authors\":\"Sebastian Ordyniak ,&nbsp;Andre Schidler ,&nbsp;Stefan Szeider\",\"doi\":\"10.1016/j.jcss.2024.103547\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We introduce backdoor DNFs, as a tool to measure the theoretical hardness of CNF formulas. Like backdoor sets and backdoor trees, backdoor DNFs are defined relative to a tractable class of CNF formulas. Each conjunctive term of a backdoor DNF defines a partial assignment that moves the input CNF formula into the base class. Backdoor DNFs are more expressive and potentially smaller than their predecessors backdoor sets and backdoor trees. We establish the fixed-parameter tractability of the backdoor DNF detection problem. Our results hold for the fundamental base classes Horn and 2CNF, and their combination. We complement our theoretical findings by an empirical study. Our experiments show that backdoor DNFs provide a significant improvement over their predecessors.</p></div>\",\"PeriodicalId\":50224,\"journal\":{\"name\":\"Journal of Computer and System Sciences\",\"volume\":\"144 \",\"pages\":\"Article 103547\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0022000024000424/pdfft?md5=28e392df06776d3baaabe0cd651c38e8&pid=1-s2.0-S0022000024000424-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer and System Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022000024000424\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer and System Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022000024000424","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

我们引入了后门 DNF,作为测量 CNF 公式理论硬度的工具。与后门集和后门树一样,后门 DNF 也是相对于一类可处理的 CNF 公式定义的。后门 DNF 的每个连接词都定义了一个部分赋值,可将输入的 CNF 公式移入基类。后门 DNF 比其前身后门集和后门树更具表现力,而且可能更小。我们建立了后门 DNF 检测问题的固定参数可操作性。我们的结果适用于基本基类 Horn 和 2CNF 以及它们的组合。我们通过实证研究补充了我们的理论发现。我们的实验表明,后门 DNF 与其前身相比有显著改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Backdoor DNFs

We introduce backdoor DNFs, as a tool to measure the theoretical hardness of CNF formulas. Like backdoor sets and backdoor trees, backdoor DNFs are defined relative to a tractable class of CNF formulas. Each conjunctive term of a backdoor DNF defines a partial assignment that moves the input CNF formula into the base class. Backdoor DNFs are more expressive and potentially smaller than their predecessors backdoor sets and backdoor trees. We establish the fixed-parameter tractability of the backdoor DNF detection problem. Our results hold for the fundamental base classes Horn and 2CNF, and their combination. We complement our theoretical findings by an empirical study. Our experiments show that backdoor DNFs provide a significant improvement over their predecessors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computer and System Sciences
Journal of Computer and System Sciences 工程技术-计算机:理论方法
CiteScore
3.70
自引率
0.00%
发文量
58
审稿时长
68 days
期刊介绍: The Journal of Computer and System Sciences publishes original research papers in computer science and related subjects in system science, with attention to the relevant mathematical theory. Applications-oriented papers may also be accepted and they are expected to contain deep analytic evaluation of the proposed solutions. Research areas include traditional subjects such as: • Theory of algorithms and computability • Formal languages • Automata theory Contemporary subjects such as: • Complexity theory • Algorithmic Complexity • Parallel & distributed computing • Computer networks • Neural networks • Computational learning theory • Database theory & practice • Computer modeling of complex systems • Security and Privacy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信