无限类型群和无限刚度

Pub Date : 2024-05-22 DOI:10.1515/jgth-2023-0228
Tamar Bar-On, Nikolay Nikolov
{"title":"无限类型群和无限刚度","authors":"Tamar Bar-On, Nikolay Nikolov","doi":"10.1515/jgth-2023-0228","DOIUrl":null,"url":null,"abstract":"We say that a group 𝐺 is of <jats:italic>profinite type</jats:italic> if it can be realized as a Galois group of some field extension. Using Krull’s theory, this is equivalent to 𝐺 admitting a profinite topology. We also say that a group of profinite type is <jats:italic>profinitely rigid</jats:italic> if it admits a unique profinite topology. In this paper, we study when abelian groups and some group extensions are of profinite type or profinitely rigid. We also discuss the connection between the properties of profinite type and profinite rigidity to the injectivity and surjectivity of the cohomology comparison maps, which were studied by Sury and other authors.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Groups of profinite type and profinite rigidity\",\"authors\":\"Tamar Bar-On, Nikolay Nikolov\",\"doi\":\"10.1515/jgth-2023-0228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We say that a group 𝐺 is of <jats:italic>profinite type</jats:italic> if it can be realized as a Galois group of some field extension. Using Krull’s theory, this is equivalent to 𝐺 admitting a profinite topology. We also say that a group of profinite type is <jats:italic>profinitely rigid</jats:italic> if it admits a unique profinite topology. In this paper, we study when abelian groups and some group extensions are of profinite type or profinitely rigid. We also discuss the connection between the properties of profinite type and profinite rigidity to the injectivity and surjectivity of the cohomology comparison maps, which were studied by Sury and other authors.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/jgth-2023-0228\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jgth-2023-0228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

如果一个群𝐺可以实现为某个域扩展的伽罗瓦群,那么我们就说这个群𝐺是无限型的。根据克鲁尔的理论,这等同于𝐺具有无限拓扑。我们还说,如果一个无限类型的群允许一个唯一的无限拓扑,那么它就是无限刚化的。在本文中,我们将研究无穷群和某些群的外延何时属于无穷型或无穷刚性。我们还讨论了无穷型和无穷刚性的性质与同调比较映射的注入性和上射性之间的联系,这些问题曾由苏里和其他作者研究过。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Groups of profinite type and profinite rigidity
We say that a group 𝐺 is of profinite type if it can be realized as a Galois group of some field extension. Using Krull’s theory, this is equivalent to 𝐺 admitting a profinite topology. We also say that a group of profinite type is profinitely rigid if it admits a unique profinite topology. In this paper, we study when abelian groups and some group extensions are of profinite type or profinitely rigid. We also discuss the connection between the properties of profinite type and profinite rigidity to the injectivity and surjectivity of the cohomology comparison maps, which were studied by Sury and other authors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信