关于 Janus In2Ge2Te6 双电层晶格导热性的第一原理研究

IF 0.9 4区 物理与天体物理 Q4 PHYSICS, CONDENSED MATTER
Wei Ding, Songwen Tian, Yankun Shen, Shijie Yang, Jingze Wang, Ziyang Yuan, Zheng Zhai
{"title":"关于 Janus In2Ge2Te6 双电层晶格导热性的第一原理研究","authors":"Wei Ding,&nbsp;Songwen Tian,&nbsp;Yankun Shen,&nbsp;Shijie Yang,&nbsp;Jingze Wang,&nbsp;Ziyang Yuan,&nbsp;Zheng Zhai","doi":"10.1134/S1063783424600535","DOIUrl":null,"url":null,"abstract":"<p>Janus In<sub>2</sub>Ge<sub>2</sub>Te<sub>6</sub> bilayer exhibit the potential for low thermal conductivity due to their complex geometry and large atomic mass contrast. The results demonstrate that the intersection of the low-frequency optical branch and the longitudinal acoustic phonon branch (LA) within the Janus In<sub>2</sub>Ge<sub>2</sub>Te<sub>6</sub> bilayer structure, combined with a larger average atomic mass, leads to a smaller phonon group velocity, a higher phonon scattering rate, a lower phonon relaxation time, and a stronger anharmonicity. These factors contribute to the lower thermal conductivity of the Janus In<sub>2</sub>Ge<sub>2</sub>Te<sub>6</sub> bilayer. The Janus In<sub>2</sub>Ge<sub>2</sub>Te<sub>6</sub> bilayer structure exhibits a maximum and minimum lattice thermal conductivity of about 0.35 and 0.1 W/(m K) at 300 and 1000 K, respectively.</p>","PeriodicalId":731,"journal":{"name":"Physics of the Solid State","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"First-principles Study on the Lattice Thermal Conductivity of Janus In2Ge2Te6 Bilayer\",\"authors\":\"Wei Ding,&nbsp;Songwen Tian,&nbsp;Yankun Shen,&nbsp;Shijie Yang,&nbsp;Jingze Wang,&nbsp;Ziyang Yuan,&nbsp;Zheng Zhai\",\"doi\":\"10.1134/S1063783424600535\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Janus In<sub>2</sub>Ge<sub>2</sub>Te<sub>6</sub> bilayer exhibit the potential for low thermal conductivity due to their complex geometry and large atomic mass contrast. The results demonstrate that the intersection of the low-frequency optical branch and the longitudinal acoustic phonon branch (LA) within the Janus In<sub>2</sub>Ge<sub>2</sub>Te<sub>6</sub> bilayer structure, combined with a larger average atomic mass, leads to a smaller phonon group velocity, a higher phonon scattering rate, a lower phonon relaxation time, and a stronger anharmonicity. These factors contribute to the lower thermal conductivity of the Janus In<sub>2</sub>Ge<sub>2</sub>Te<sub>6</sub> bilayer. The Janus In<sub>2</sub>Ge<sub>2</sub>Te<sub>6</sub> bilayer structure exhibits a maximum and minimum lattice thermal conductivity of about 0.35 and 0.1 W/(m K) at 300 and 1000 K, respectively.</p>\",\"PeriodicalId\":731,\"journal\":{\"name\":\"Physics of the Solid State\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of the Solid State\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1063783424600535\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of the Solid State","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1063783424600535","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

摘要Janus In2Ge2Te6双层结构因其复杂的几何形状和较大的原子质量对比而具有低热导率的潜力。研究结果表明,在 Janus In2Ge2Te6 双层结构中,低频光学支和纵向声子支(LA)的交叉,再加上较大的平均原子质量,导致声子群速度较小、声子散射率较高、声子弛豫时间较短以及非谐波性较强。这些因素导致了 Janus In2Ge2Te6 双电层较低的热导率。Janus In2Ge2Te6 双层结构在 300 K 和 1000 K 时的最大和最小晶格热导率分别约为 0.35 W/(m K)和 0.1 W/(m K)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

First-principles Study on the Lattice Thermal Conductivity of Janus In2Ge2Te6 Bilayer

First-principles Study on the Lattice Thermal Conductivity of Janus In2Ge2Te6 Bilayer

First-principles Study on the Lattice Thermal Conductivity of Janus In2Ge2Te6 Bilayer

Janus In2Ge2Te6 bilayer exhibit the potential for low thermal conductivity due to their complex geometry and large atomic mass contrast. The results demonstrate that the intersection of the low-frequency optical branch and the longitudinal acoustic phonon branch (LA) within the Janus In2Ge2Te6 bilayer structure, combined with a larger average atomic mass, leads to a smaller phonon group velocity, a higher phonon scattering rate, a lower phonon relaxation time, and a stronger anharmonicity. These factors contribute to the lower thermal conductivity of the Janus In2Ge2Te6 bilayer. The Janus In2Ge2Te6 bilayer structure exhibits a maximum and minimum lattice thermal conductivity of about 0.35 and 0.1 W/(m K) at 300 and 1000 K, respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics of the Solid State
Physics of the Solid State 物理-物理:凝聚态物理
CiteScore
1.70
自引率
0.00%
发文量
60
审稿时长
2-4 weeks
期刊介绍: Presents the latest results from Russia’s leading researchers in condensed matter physics at the Russian Academy of Sciences and other prestigious institutions. Covers all areas of solid state physics including solid state optics, solid state acoustics, electronic and vibrational spectra, phase transitions, ferroelectricity, magnetism, and superconductivity. Also presents review papers on the most important problems in solid state physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信