硅纳米线掺入高效柔性 PEDOT:PSS/Silicon 混合太阳能电池

IF 5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Deepak Sharma, Ruchi K. Sharma, Avritti Srivastava, Vamsi K. Komarala, Arman Ahnood, Pathi Prathap and Sanjay K. Srivastava
{"title":"硅纳米线掺入高效柔性 PEDOT:PSS/Silicon 混合太阳能电池","authors":"Deepak Sharma, Ruchi K. Sharma, Avritti Srivastava, Vamsi K. Komarala, Arman Ahnood, Pathi Prathap and Sanjay K. Srivastava","doi":"10.1039/D4SE00439F","DOIUrl":null,"url":null,"abstract":"<p >The global demand for renewable energy sources has intensified the quest for innovative and inexpensive solar cell technologies. Employing thin crystalline silicon (c-Si) is of great interest in these advancements. Herein, the integration of organic poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) and nanostructured thin-flexible Si wafers (∼50 μm) is investigated to harness their synergies in fabricating mechanically flexible hybrid heterojunction solar cells (HHSCs). Flexible Si wafers were prepared through alkali etching, followed by incorporation of silicon nanowires (SiNW) on one side of the thin wafers using a single-step silver (Ag)-assisted chemical etching (Ag-ACE) process at room temperature. The SiNW-incorporated flexible solar cells demonstrated an impressive power conversion efficiency (PCE: 9.0%) even with the simple design owing to enhanced light absorption in a broad spectral range. It is found that the SiNW length and polymer layer thickness play a critical role in defining the trade-off among the optoelectronic, junction and solar cell parameters. The SiNW with a 170 ± 20 nm length and PEDOT:PSS with a 100 ± 10 nm layer is the optimal combination for the best solar cell parameters. The enhanced light trapping and charge generation rate are also confirmed by finite-difference time-domain (FDTD) simulation. The detailed analysis of light trapping, junction properties, surface passivation, device performance parameters and their co-relation are discussed. Our study demonstrates the SiNW-incorporated flexible and efficient PEDOT:PSS/n-Si HHSCs, which can not only lead to the advancement of low-cost photovoltaics but also offer potential for diverse applications, from portable electronics to wearable technology.</p>","PeriodicalId":104,"journal":{"name":"Sustainable Energy & Fuels","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Silicon nanowire-incorporated efficient and flexible PEDOT:PSS/silicon hybrid solar cells†\",\"authors\":\"Deepak Sharma, Ruchi K. Sharma, Avritti Srivastava, Vamsi K. Komarala, Arman Ahnood, Pathi Prathap and Sanjay K. Srivastava\",\"doi\":\"10.1039/D4SE00439F\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The global demand for renewable energy sources has intensified the quest for innovative and inexpensive solar cell technologies. Employing thin crystalline silicon (c-Si) is of great interest in these advancements. Herein, the integration of organic poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) and nanostructured thin-flexible Si wafers (∼50 μm) is investigated to harness their synergies in fabricating mechanically flexible hybrid heterojunction solar cells (HHSCs). Flexible Si wafers were prepared through alkali etching, followed by incorporation of silicon nanowires (SiNW) on one side of the thin wafers using a single-step silver (Ag)-assisted chemical etching (Ag-ACE) process at room temperature. The SiNW-incorporated flexible solar cells demonstrated an impressive power conversion efficiency (PCE: 9.0%) even with the simple design owing to enhanced light absorption in a broad spectral range. It is found that the SiNW length and polymer layer thickness play a critical role in defining the trade-off among the optoelectronic, junction and solar cell parameters. The SiNW with a 170 ± 20 nm length and PEDOT:PSS with a 100 ± 10 nm layer is the optimal combination for the best solar cell parameters. The enhanced light trapping and charge generation rate are also confirmed by finite-difference time-domain (FDTD) simulation. The detailed analysis of light trapping, junction properties, surface passivation, device performance parameters and their co-relation are discussed. Our study demonstrates the SiNW-incorporated flexible and efficient PEDOT:PSS/n-Si HHSCs, which can not only lead to the advancement of low-cost photovoltaics but also offer potential for diverse applications, from portable electronics to wearable technology.</p>\",\"PeriodicalId\":104,\"journal\":{\"name\":\"Sustainable Energy & Fuels\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Energy & Fuels\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/se/d4se00439f\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy & Fuels","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/se/d4se00439f","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

全球对可再生能源的需求加剧了对创新型廉价太阳能电池技术的追求。采用薄晶体硅(c-Si)是这些技术进步中的一大亮点。本文研究了有机聚(3,4-亚乙二氧基噻吩):聚(苯乙烯磺酸)(PEDOT:PSS)与纳米结构薄柔性硅晶片(约 50 μm)的整合,以利用它们在制造机械柔性混合异质结太阳能电池(HHSCs)中的协同作用。柔性硅晶片是通过碱蚀刻制备的,然后在室温下使用单步银(Ag)辅助化学蚀刻(Ag-ACE)工艺在薄晶片的单面上形成 SiNW。由于在宽光谱范围内增强了光吸收,即使设计简单,加入 SiNW 的柔性太阳能电池也能产生令人印象深刻的功率转换效率(PCE:9.0%)。研究发现,SiNW 长度和聚合物层厚度对确定光电、结和太阳能电池参数之间的权衡起着关键作用。长度为 170±20 nm 的 SiNW 和厚度为 100±10 nm 的 PEDOT:PSS 层是获得最佳太阳能电池参数的最佳组合。有限差分时域(FDTD)仿真也证实了光捕获和电荷生成率的提高。我们还讨论了光捕获、结特性、表面钝化、器件性能参数及其相互关系的详细分析。我们的研究证明了加入 SiNW 的柔性高效 PEDOT:PSS/n-Si HHSCs 不仅能推动低成本光伏技术的发展,还能为从便携式电子产品到可穿戴技术等各种应用提供潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Silicon nanowire-incorporated efficient and flexible PEDOT:PSS/silicon hybrid solar cells†

Silicon nanowire-incorporated efficient and flexible PEDOT:PSS/silicon hybrid solar cells†

The global demand for renewable energy sources has intensified the quest for innovative and inexpensive solar cell technologies. Employing thin crystalline silicon (c-Si) is of great interest in these advancements. Herein, the integration of organic poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) and nanostructured thin-flexible Si wafers (∼50 μm) is investigated to harness their synergies in fabricating mechanically flexible hybrid heterojunction solar cells (HHSCs). Flexible Si wafers were prepared through alkali etching, followed by incorporation of silicon nanowires (SiNW) on one side of the thin wafers using a single-step silver (Ag)-assisted chemical etching (Ag-ACE) process at room temperature. The SiNW-incorporated flexible solar cells demonstrated an impressive power conversion efficiency (PCE: 9.0%) even with the simple design owing to enhanced light absorption in a broad spectral range. It is found that the SiNW length and polymer layer thickness play a critical role in defining the trade-off among the optoelectronic, junction and solar cell parameters. The SiNW with a 170 ± 20 nm length and PEDOT:PSS with a 100 ± 10 nm layer is the optimal combination for the best solar cell parameters. The enhanced light trapping and charge generation rate are also confirmed by finite-difference time-domain (FDTD) simulation. The detailed analysis of light trapping, junction properties, surface passivation, device performance parameters and their co-relation are discussed. Our study demonstrates the SiNW-incorporated flexible and efficient PEDOT:PSS/n-Si HHSCs, which can not only lead to the advancement of low-cost photovoltaics but also offer potential for diverse applications, from portable electronics to wearable technology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sustainable Energy & Fuels
Sustainable Energy & Fuels Energy-Energy Engineering and Power Technology
CiteScore
10.00
自引率
3.60%
发文量
394
期刊介绍: Sustainable Energy & Fuels will publish research that contributes to the development of sustainable energy technologies with a particular emphasis on new and next-generation technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信