旅行时间断层摄影的稳定性和统计反演

IF 2 2区 数学 Q1 MATHEMATICS, APPLIED
Ashwin Tarikere and Hanming Zhou
{"title":"旅行时间断层摄影的稳定性和统计反演","authors":"Ashwin Tarikere and Hanming Zhou","doi":"10.1088/1361-6420/ad4911","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the travel time tomography problem for conformal metrics on a bounded domain, which seeks to determine the conformal factor of the metric from the lengths of geodesics joining boundary points. We establish forward and inverse stability estimates for simple conformal metrics under some a priori conditions. We then apply the stability estimates to show the consistency of a Bayesian statistical inversion technique for travel time tomography with discrete, noisy measurements.","PeriodicalId":50275,"journal":{"name":"Inverse Problems","volume":"91 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability and statistical inversion of travel time tomography\",\"authors\":\"Ashwin Tarikere and Hanming Zhou\",\"doi\":\"10.1088/1361-6420/ad4911\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider the travel time tomography problem for conformal metrics on a bounded domain, which seeks to determine the conformal factor of the metric from the lengths of geodesics joining boundary points. We establish forward and inverse stability estimates for simple conformal metrics under some a priori conditions. We then apply the stability estimates to show the consistency of a Bayesian statistical inversion technique for travel time tomography with discrete, noisy measurements.\",\"PeriodicalId\":50275,\"journal\":{\"name\":\"Inverse Problems\",\"volume\":\"91 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inverse Problems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6420/ad4911\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inverse Problems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1088/1361-6420/ad4911","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑了有界域上共形度量的旅行时间断层扫描问题,该问题旨在通过连接边界点的大地线长度确定度量的共形因子。我们在一些先验条件下建立了简单保角度量的正向和反向稳定性估计。然后,我们应用这些稳定性估计值来证明贝叶斯统计反演技术在离散、噪声测量的旅行时间断层摄影中的一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability and statistical inversion of travel time tomography
In this paper, we consider the travel time tomography problem for conformal metrics on a bounded domain, which seeks to determine the conformal factor of the metric from the lengths of geodesics joining boundary points. We establish forward and inverse stability estimates for simple conformal metrics under some a priori conditions. We then apply the stability estimates to show the consistency of a Bayesian statistical inversion technique for travel time tomography with discrete, noisy measurements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inverse Problems
Inverse Problems 数学-物理:数学物理
CiteScore
4.40
自引率
14.30%
发文量
115
审稿时长
2.3 months
期刊介绍: An interdisciplinary journal combining mathematical and experimental papers on inverse problems with theoretical, numerical and practical approaches to their solution. As well as applied mathematicians, physical scientists and engineers, the readership includes those working in geophysics, radar, optics, biology, acoustics, communication theory, signal processing and imaging, among others. The emphasis is on publishing original contributions to methods of solving mathematical, physical and applied problems. To be publishable in this journal, papers must meet the highest standards of scientific quality, contain significant and original new science and should present substantial advancement in the field. Due to the broad scope of the journal, we require that authors provide sufficient introductory material to appeal to the wide readership and that articles which are not explicitly applied include a discussion of possible applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信