不可定向曲面的尼尔森实现问题

IF 0.6 4区 数学 Q3 MATHEMATICS
Nestor Colin , Miguel A. Xicoténcatl
{"title":"不可定向曲面的尼尔森实现问题","authors":"Nestor Colin ,&nbsp;Miguel A. Xicoténcatl","doi":"10.1016/j.topol.2024.108957","DOIUrl":null,"url":null,"abstract":"<div><p>We show the Teichmüller space of a non-orientable surface with marked points (considered as a Klein surface) can be identified with a subspace of the Teichmüller space of its orientable double cover. It is also well known that the mapping class group <span><math><mi>Mod</mi><mo>(</mo><msub><mrow><mi>N</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>;</mo><mi>k</mi><mo>)</mo></math></span> of a non-orientable surface can be identified with a subgroup of <span><math><mi>Mod</mi><mo>(</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>g</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>;</mo><mn>2</mn><mi>k</mi><mo>)</mo></math></span>, the mapping class group of its orientable double cover. These facts, together with the classical Nielsen realization theorem, are used to prove that every finite subgroup of <span><math><mi>Mod</mi><mo>(</mo><msub><mrow><mi>N</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>;</mo><mi>k</mi><mo>)</mo></math></span> can be lifted isomorphically to a subgroup of the group of diffeomorphisms <span><math><mi>Diff</mi><mo>(</mo><msub><mrow><mi>N</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>;</mo><mi>k</mi><mo>)</mo></math></span>. In contrast, we show the projection <span><math><mi>Diff</mi><mo>(</mo><msub><mrow><mi>N</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>)</mo><mo>→</mo><mi>Mod</mi><mo>(</mo><msub><mrow><mi>N</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>)</mo></math></span> does not admit a section for large <em>g</em>.</p></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"353 ","pages":"Article 108957"},"PeriodicalIF":0.6000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Nielsen realization problem for non-orientable surfaces\",\"authors\":\"Nestor Colin ,&nbsp;Miguel A. Xicoténcatl\",\"doi\":\"10.1016/j.topol.2024.108957\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We show the Teichmüller space of a non-orientable surface with marked points (considered as a Klein surface) can be identified with a subspace of the Teichmüller space of its orientable double cover. It is also well known that the mapping class group <span><math><mi>Mod</mi><mo>(</mo><msub><mrow><mi>N</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>;</mo><mi>k</mi><mo>)</mo></math></span> of a non-orientable surface can be identified with a subgroup of <span><math><mi>Mod</mi><mo>(</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>g</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>;</mo><mn>2</mn><mi>k</mi><mo>)</mo></math></span>, the mapping class group of its orientable double cover. These facts, together with the classical Nielsen realization theorem, are used to prove that every finite subgroup of <span><math><mi>Mod</mi><mo>(</mo><msub><mrow><mi>N</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>;</mo><mi>k</mi><mo>)</mo></math></span> can be lifted isomorphically to a subgroup of the group of diffeomorphisms <span><math><mi>Diff</mi><mo>(</mo><msub><mrow><mi>N</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>;</mo><mi>k</mi><mo>)</mo></math></span>. In contrast, we show the projection <span><math><mi>Diff</mi><mo>(</mo><msub><mrow><mi>N</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>)</mo><mo>→</mo><mi>Mod</mi><mo>(</mo><msub><mrow><mi>N</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>)</mo></math></span> does not admit a section for large <em>g</em>.</p></div>\",\"PeriodicalId\":51201,\"journal\":{\"name\":\"Topology and its Applications\",\"volume\":\"353 \",\"pages\":\"Article 108957\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166864124001421\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166864124001421","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了有标记点的不可定向曲面(视为克莱因曲面)的泰希缪勒空间可以与其可定向双盖的泰希缪勒空间的子空间相识别。同样众所周知的是,不可定向曲面的映射类群 Mod(Ng;k) 可以与其可定向双盖的映射类群 Mod(Sg-1;2k) 的一个子群相识别。这些事实以及经典的尼尔森实现定理被用来证明,Mod(Ng;k) 的每个有限子群都可以同构地提升到衍射群 Diff(Ng;k) 的一个子群。与此相反,我们证明了投影 Diff(Ng)→Mod(Ng) 在大 g 时不允许分段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Nielsen realization problem for non-orientable surfaces

We show the Teichmüller space of a non-orientable surface with marked points (considered as a Klein surface) can be identified with a subspace of the Teichmüller space of its orientable double cover. It is also well known that the mapping class group Mod(Ng;k) of a non-orientable surface can be identified with a subgroup of Mod(Sg1;2k), the mapping class group of its orientable double cover. These facts, together with the classical Nielsen realization theorem, are used to prove that every finite subgroup of Mod(Ng;k) can be lifted isomorphically to a subgroup of the group of diffeomorphisms Diff(Ng;k). In contrast, we show the projection Diff(Ng)Mod(Ng) does not admit a section for large g.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
33.30%
发文量
251
审稿时长
6 months
期刊介绍: Topology and its Applications is primarily concerned with publishing original research papers of moderate length. However, a limited number of carefully selected survey or expository papers are also included. The mathematical focus of the journal is that suggested by the title: Research in Topology. It is felt that it is inadvisable to attempt a definitive description of topology as understood for this journal. Certainly the subject includes the algebraic, general, geometric, and set-theoretic facets of topology as well as areas of interactions between topology and other mathematical disciplines, e.g. topological algebra, topological dynamics, functional analysis, category theory. Since the roles of various aspects of topology continue to change, the non-specific delineation of topics serves to reflect the current state of research in topology. At regular intervals, the journal publishes a section entitled Open Problems in Topology, edited by J. van Mill and G.M. Reed. This is a status report on the 1100 problems listed in the book of the same name published by North-Holland in 1990, edited by van Mill and Reed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信