论随机正态矩阵特征值模的特征多项式

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Sung-Soo Byun, Christophe Charlier
{"title":"论随机正态矩阵特征值模的特征多项式","authors":"Sung-Soo Byun, Christophe Charlier","doi":"10.1007/s00365-024-09689-x","DOIUrl":null,"url":null,"abstract":"<p>We study the characteristic polynomial <span>\\(p_{n}(x)=\\prod _{j=1}^{n}(|z_{j}|-x)\\)</span> where the <span>\\(z_{j}\\)</span> are drawn from the Mittag–Leffler ensemble, i.e. a two-dimensional determinantal point process which generalizes the Ginibre point process. We obtain precise large <i>n</i> asymptotics for the moment generating function <span>\\(\\mathbb {E}[e^{\\frac{u}{\\pi } \\, \\text {Im\\,}\\ln p_{n}(r)}e^{a \\, \\text {Re\\,}\\ln p_{n}(r)}]\\)</span>, in the case where <i>r</i> is in the bulk, <span>\\(u \\in \\mathbb {R}\\)</span> and <span>\\(a \\in \\mathbb {N}\\)</span>. This expectation involves an <span>\\(n \\times n\\)</span> determinant whose weight is supported on the whole complex plane, is rotation-invariant, and has both jump- and root-type singularities along the circle centered at 0 of radius <i>r</i>. This “circular\" root-type singularity differs from earlier works on Fisher–Hartwig singularities, and surprisingly yields a new kind of ingredient in the asymptotics, the so-called <i>associated Hermite polynomials</i>.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Characteristic Polynomial of the Eigenvalue Moduli of Random Normal Matrices\",\"authors\":\"Sung-Soo Byun, Christophe Charlier\",\"doi\":\"10.1007/s00365-024-09689-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the characteristic polynomial <span>\\\\(p_{n}(x)=\\\\prod _{j=1}^{n}(|z_{j}|-x)\\\\)</span> where the <span>\\\\(z_{j}\\\\)</span> are drawn from the Mittag–Leffler ensemble, i.e. a two-dimensional determinantal point process which generalizes the Ginibre point process. We obtain precise large <i>n</i> asymptotics for the moment generating function <span>\\\\(\\\\mathbb {E}[e^{\\\\frac{u}{\\\\pi } \\\\, \\\\text {Im\\\\,}\\\\ln p_{n}(r)}e^{a \\\\, \\\\text {Re\\\\,}\\\\ln p_{n}(r)}]\\\\)</span>, in the case where <i>r</i> is in the bulk, <span>\\\\(u \\\\in \\\\mathbb {R}\\\\)</span> and <span>\\\\(a \\\\in \\\\mathbb {N}\\\\)</span>. This expectation involves an <span>\\\\(n \\\\times n\\\\)</span> determinant whose weight is supported on the whole complex plane, is rotation-invariant, and has both jump- and root-type singularities along the circle centered at 0 of radius <i>r</i>. This “circular\\\" root-type singularity differs from earlier works on Fisher–Hartwig singularities, and surprisingly yields a new kind of ingredient in the asymptotics, the so-called <i>associated Hermite polynomials</i>.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00365-024-09689-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00365-024-09689-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了特征多项式 \(p_{n}(x)=\prod _{j=1}^{n}(|z_{j}|-x)\) ,其中 \(z_{j}\) 来自 Mittag-Leffler 集合,即二维行列式点过程,它概括了 Ginibre 点过程。我们得到了矩生成函数 \(\mathbb {E}[e^{\frac{u}{\pi }) 的精确大 n 渐近线。\(text{Im\,}\ln p_{n}(r)}e^{a\, \text {Re\,}\ln p_{n}(r)}]\), in the case where r is in the bulk, \(u\in \mathbb {R}\) and\(a\in \mathbb {N}\).这种期望涉及到一个(n 次 n)行列式,它的权重在整个复平面上得到支持,是旋转不变的,并且沿着半径为 r 的以 0 为圆心的圆具有跳跃式和根式奇点。这种 "圆 "根式奇点不同于早期关于费雪-哈特维格奇点的研究,并且令人惊讶地在渐近中产生了一种新的成分,即所谓的相关赫米特多项式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Characteristic Polynomial of the Eigenvalue Moduli of Random Normal Matrices

We study the characteristic polynomial \(p_{n}(x)=\prod _{j=1}^{n}(|z_{j}|-x)\) where the \(z_{j}\) are drawn from the Mittag–Leffler ensemble, i.e. a two-dimensional determinantal point process which generalizes the Ginibre point process. We obtain precise large n asymptotics for the moment generating function \(\mathbb {E}[e^{\frac{u}{\pi } \, \text {Im\,}\ln p_{n}(r)}e^{a \, \text {Re\,}\ln p_{n}(r)}]\), in the case where r is in the bulk, \(u \in \mathbb {R}\) and \(a \in \mathbb {N}\). This expectation involves an \(n \times n\) determinant whose weight is supported on the whole complex plane, is rotation-invariant, and has both jump- and root-type singularities along the circle centered at 0 of radius r. This “circular" root-type singularity differs from earlier works on Fisher–Hartwig singularities, and surprisingly yields a new kind of ingredient in the asymptotics, the so-called associated Hermite polynomials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信